333. Несмотря на предупреждение, читатель мог предположить, что решением головоломки служит жирная зигзагообразная линия на нашем рисунке. Однако это не так, поскольку получившиеся части не совпадают по форме и размерам. Разрез следовало бы вести не по участку C, а по пунктирной линии D, но там отсутствует шов. На самом деле следует вырезать часть, которая заштрихована. Лоскут в левом верхнем углу показан для ориентации на исходном рисунке.
334. На рисунке показано, как следует разрезать линолеум на две части A и B, чтобы составить из них квадратную доску.
335. На рисунке слева показано, как можно покрыть квадрат 29 квадратными плитками, сохранив при этом 17 из них в целости и разрезав остальные 12 надвое. Части одной плитки обозначены одинаковыми цифрами.
336. По-видимому, существует лишь одно решение этой головоломки, которое представлено на рисунке справа. Наименьшее число частей равно 11; они должны иметь указанные размеры. Три наибольшие части не могут располагаться иначе, а группу из восьми квадратов можно «отразить».
[По поводу общей задачи, так и не решенной до сих пор, о делении квадратного куска решетки любого размера вдоль ее линий на минимальное число меньших квадратов, см. гл. 15 книги М. Гарднера «Математические новеллы» (М., изд-во «Мир», 1974).
Насколько мне известно, соответствующая задача для треугольной решетки еще не рассматривалась. — М. Г.]
337. На рисунке показано, как разрезать квадрат на 4 части одинакового размера и одной формы так, чтобы в каждой из частей содержалось по звездочке и по крестику,
338. Если вырезать греческий крест меньших размеров (см. случай 1), то из четырех частей A, B, C и D можно сложить квадрат, показанный в случае 2.
339. Отрежьте верхнюю и нижнюю части креста и поместите их в положения A и B (случай I), а оставшуюся большую часть разрежьте на 3 части так, чтобы из полученных 5 частей сложить прямоугольник, изображенный в случае II. Можно сказать, что этот прямоугольник составлен из 15 квадратов — по 5 квадратов на каждый новый крест. Остальные разрезы провести нетрудно. Из частей 2, 5, 8, 9 с очевидностью получается один крест; из частей 13, 6, 10, 7 и 11 — второй (случай III), а из 1, 3, 4, 12 получается третий крест (случай IV ). Площадь каждого конца малого креста составляет ⅓ площади любого конца большого креста.
(Число частей можно понизить до 12. — М. Г.]
340. Как следует разрезать данную фигуру на 4 части, чтобы из них получился квадрат, показано на рисунке.
341. В случае A изображен круг, разделенный на 4 части, образующие «великую Монаду», а в случае B показано, как из двух таких частей можно составить один табурет (второй табурет получается аналогично из частей 3 и 4). Правда, отверстия для руки располагаются поперек, а не вдоль овалов, тем не менее все условия задачи выполнены.
342. Разрежьте один из треугольников пополам и сложите части вместе, как показано в случае 1. Затем проведите разрез вдоль пунктирных линий так, чтобы и ab, и cd равнялись стороне искомого квадрата. Затем сложите полученные части вместе, как показано в случае 2, сдвинув F и C влево вверх и переместив маленький кусочек D из одного угла в другой.
[Существует решение данной задачи, содержащее только 5 частей. — М. Г.]
343. На рисунке показано, как можно разрезать символ масти пик на три части, чтобы получить символ червовой масти.
344. Вы видите на рисунке, как следует расположить 4 части, чтобы одна клетка исчезла (на первый взгляд). Объяснение этого феномена состоит в том, что края частей, расположенные вдоль жирной линии, не совпадают по направлению. Если вы расположите внешние края данной фигуры точно под прямым углом, то некоторые части перекроются и площадь перекрытой поверхности окажется равной площади одной клетки. Вот в чем и состоит простое объяснение нашего парадокса.
345. Прежде всего проведите разрез AB. Затем сложите полученные три части вместе так, чтобы при следующем взмахе ножниц вы могли провести одновременно разрезы CD, EF и GH (см. рисунок справа).
346. Восемь кусков фанеры можно расположить симметрично, чтобы они образовали квадрат таким образом, как показано на рисунке.
347. Сложите два квадрата вместе таким образом, чтобы линии AB и CD были прямыми. Затем найдите центр большего квадрата и проведите через него прямую EF, параллельную AD. Если вы теперь проведете через тот же центр перпендикулярно EF прямую GH, то больший квадрат разобьется на 4 части, из которых вместе с меньшим квадратом можно будет составить новый квадрат.
[Это решение было впервые найдено английским математиком-любителем Генри Перигейлом, который опубликовал его в 1873 г. Оно представляет собой одно из лучших доказательств теоремы Пифагора с помощью разрезания. См. гл. 38 книги М. Гарднера «Математические головоломки и развлечения» (М., изд-во «Мир», 1971). — М. Г.].
348. На рисунке показано, как можно разрезать фанеру. Квадраты A и B вырезаются целиком (1), а из четырех частей C, D, E и F можно составить третий квадрат (2).
[Существуют решения данной задачи, в которых участвует только пять частей. Не сможет ли читатель отыскать решение из пяти частей, при котором общая длина разрезов составляет 16 единиц? — М. Г.]
349. Вырежьте кусок A и, повернув его на четверть оборота по часовой стрелке, соедините с куском B. При этом получится правильная шахматная доска.
350. На рисунке показано, как составить квадрат из 20 кусочков.
351. Если ковер разрезать на две части, как показано в случае 1, и сшить куски вместе таким образом, как изображено в случае 2, то получится квадрат. Ширина ступеньки равна 2, а высота 1 м.
352. Согнув листок по серединам противоположных сторон, получим прямые AOB и COD. Произведем также сгибы EH и FG, делящие AO и OB пополам. Перевернем AK так, чтобы K попала на прямую EH в точке E, а затем произведем сгибы через AE и EOG. Аналогично найдем точку H и согнем бумагу вдоль AH и HOF. Произведя сгибы BF, BG, EF и HG, получим искомый правильный шестиугольник EFBGHAE.
353. Сложив AB вдвое, найдите середину E. Согните бумагу вдоль EC. Совместите EB с EC и согните так, чтобы получить EF и FG. Сделайте так, чтобы отрезок CH стал равным отрезку CG. Найдите K — середину отрезка BH и отложите отрезок CL, равный BK. Отрезок KL — сторона правильного пятиугольника. Затем отложите (см. правую часть рисунка) отрезки KM и LN, равные KL, так, чтобы M и N соответственно лежали на BA и CD. Согнув бумагу вдоль PQ, отложите MO и NO, равные KM и LN. Многоугольник KMONL и есть искомый пятиугольник.
354. Соединив между собой края AB и CD, вы можете отметить сгибами средние точки E и G. Аналогичным образом вы можете найти точки F и H, а затем согнуть квадрат EHGF. Далее совместите CH с EH и EC с EH, при этом вы получите точку пересечения 1. Сделайте то же самое с оставшимися тремя углами — сгибы очертят правильный восьмиугольник, который затем можно будет вырезать с помощью ножниц.
355. Сложите квадрат пополам вдоль FE. Загните сторону AB так, чтобы точка B легла на FE, и вы получите точки G и H, через которые можно провести сгиб HGJ. Оставляя точки B и G по-прежнему совмещенными, отогните AB назад на AH, и вы получите прямую AK. Теперь вы можете сложить треугольник AJK — наибольший равносторонний треугольник из всех возможных.
356. Отогнув угол A, найдите точку C, которая делала бы отрезок BC равным отрезку AB, и перегните полоску, как показано в случае 1. Вы получите точку D. Далее согните полоску так, как показано в случае 2, чтобы ее край прошел вдоль AB. Вы получите точку E. Продолжая действовать аналогичным образом (случай 3), вы уложите всю полоску в форме пятиугольника. Это, как мы уже говорили, просто, но вместе с тем интересно и поучительно.
357. Разбейте AB пополам точкой C и проведите прямую CG параллельно BH. Затем найдите точку D (середину AC) и опишите полуокружность DB, пересекающую CG в точке E. Прямая DEF даст положение наикратчайшего сгиба.
358. Перенумеруйте марки, как было показано на исходном рисунке, то есть 1, 2, 3, 4 в первой и 5, 6, 7, 8 во второй строке. Чтобы сложить их в порядке 1, 5, 6, 4, 8, 7, 3, 2 (сверху видна только первая марка), начните следующим образом. Повернув все марки лицом вниз
5 | 6 | 7 | 8 |
1 | 2 | 3 | 4 |
согните полоску так, чтобы марка 7 пришлась на марку 6. Положите 4 на 8 и введите их обе между 7 и 6 так, чтобы эти четыре марки расположились в порядке 7, 8, 4, 6. Теперь поместите 5 и 1 под 6, и все готово.
Добиться, чтобы марки расположились в последовательности 1, 3, 7, 5, 6, 8, 4, 2, труднее, и ее можно легко проглядеть, если кто-нибудь не убежден, что в силу некоторого закона и такое расположение возможно. Сначала согните блок так, чтобы были видны только марки