Радио и телевидение?.. Это очень просто! — страница 37 из 51

Д1 и Д2 напряжения уже не равны по величине; между точками А и В появляется разность потенциалов, равная разности между этими двумя напряжениями. Это напряжение тем выше, чем больше поступающая из УПЧ частота отличается от частоты 6,5 МГц, на которую настроен трансформатор связи. А величина этого напряжения изменяется в соответствии с изменением частоты усиленных колебаний.

Это означает, что между точками А и В мы получаем то самое напряжение НЧ, которое в передатчике модулировало частоту несущих колебаний. Остается лишь усилить его известными тебе способами, чтобы затем подать на громкоговоритель.


Детектор отношений

Схема другого демодулятора, получившего название детектора отношений, похожа на только что изученную нами схему дискриминатора. Но в этой схеме диоды включены не навстречу, а в одном направлении (рис. 172).



Рис. 172.Демодулятор типа детектора отношений.


Таким образом, все напряжения, наведенные во вторичной обмотке трансформатора, выпрямляются и создают между точками А и X и между точками X и В два напряжения, которые складываются. Их сумма, образованная между точками А и В, заряжает электролитический конденсатор С3, емкость которого несколько микрофарад. Благодаря этой большой емкости напряжение между точками А и В остается неизменным даже в случае быстрых изменений амплитуды, вызываемых атмосферными помехами, и последние не ощущает радиослушатель.

Однако это постоянное напряжение между точками А и В изменяется, если вследствие замирания ослабляется электромагнитное поле принимаемых волн. Вот почему это напряжение можно использовать для АРУ.

Что же касается выпрямленных напряжений, появляющихся на обкладках конденсаторов С1 и С2, то они зависят от величин напряжений, наводимых на каждой из половин вторичной обмотки трансформатора ПЧ. Во время изучения работы дискриминатора мы отметили, что эти напряжения идентичны, когда в отсутствие модуляции промежуточная частота не изменяется и равна 6,5 МГц, и различаются между собой, когда промежуточная частота модулирована. В рассматриваемом сейчас случае потенциал точки X изменяется относительно потенциалов точек А и В в такт с изменениями частоты, а амплитуда этих колебаний пропорциональна отклонению частот. Это означает, что в точке X мы имеем демодулированный сигнал НЧ.

Ты убедился, что ЧМ требует создания приемников более сложных, чем AM. Но эти усложнения заслуживают внимания, так как благодаря им получают такую верность воспроизведения звука, какую AM обеспечить не может.

Беседа пятнадцатаяАНАЛИЗ ТЕЛЕВИЗИОННОГО ИЗОБРАЖЕНИЯ

В этой беседе освещаются основные принципы современных телевизионных методов передачи изображений. Любознайкин рассказывает своему другу о способе последовательной передачи элементов изображения, рассматривает ширину полосы частот видеосигнала, объясняет причины чересстрочной развертки и упоминает об основных телевизионных стандартах, принятых в разных странах.


Кинематограф — передача изображений во времени


Незнайкин. — Как всегда, я с большим интересом и вниманием прослушал записанный на магнитную ленту последний монолог твоего дядюшки. С его слов я, надо сказать не без удивления, узнал, что телевизионные сигналы занимают полосу частот чудовищной ширины — целых 6 МГц. Их называют видеосигналами. Я предполагаю, что это название происходит от латинского «я вижу».

Любознайкин. — Я убедился, что ты обладаешь хорошими знаниями латинского языка. Однако, как мне кажется, ты не знаешь самых элементарных принципов телевидения.

Н. — На этот раз, мой дорогой друг, ты несправедлив по отношению ко мне. Я знаю, что в телевидении в секунду передается 25 кадров, что более чем достаточно. Недавно я прочитал статью об истории изобретения кино.

Из статьи я узнал, что братьям Луи и Огюсту Люмьерам удалось создать кино, потому что, на наше счастье, человек обладает способностью запоминать зрительные ощущения. Эти ощущения сохраняются примерно одну десятую часть секунды, но не на сетчатке глаза, как это часто говорят, а в нашем мозгу.

Л. — Совершенно верно. Поэтому первоначально в немом кино показывали по 16 кадров в секунду. Из-за сохранения зрительных ощущений каждый кадр не воспринимался отдельно от предшествующего ему и следующего за ним кадров. Непрерывность восприятия была полностью обеспечена.

С 1930 г. после появления звукового кино скорость чередования кадров повысили до 24 в секунду, что несколько отличается от частоты, принятой в телевидении.



Н. — Сказанное тобой позволило мне понять, почему сейчас при демонстрации по телевидению фильмов, снятых в эпоху немого кино, нас приводит в величайшее изумление чрезмерная скорость всех движений и жестов людей. Объяснение этому явлению очень простое: фильмы, снятые с частотой 16 кадров, показывают со скоростью 25 кадров в секунду. Но все это ни в коей мере не объясняет колоссальной ширины полосы видеосигнала.



Последовательная передача изображения в телевидении

Л. — Пойми, Незнайкин, что между кино, передающим движущиеся изображения во времени, и телевидением, передающим их в пространстве, имеется небольшая разница: каждый кинокадр появляется весь целиком, тогда как в телевидении он образуется в результате последовательного появления всех составляющих его элементов.

Н. — Что ты называешь элементом?

Л. — Этим словом обозначается самая маленькая частица изображения, имеющая настолько крохотную поверхность, что ее яркость можно принять одинаковой. Эти элементы настолько малы, что их даже называют «точками». Разумеется, что этот термин не точен, так как по данному в геометрии определению точка не имеет ни ширины, ни длины, тогда как последовательно передаваемые элементы изображения имеют конечные размеры.



Н. — А в каком порядке передают элементы изображения?

Л. — Точно в том же, в каком ты читаешь книгу. В каждой строке слева направо ты пробегаешь глазами элементы текста — буквы. Дойдя до конца строки, твой взгляд немного опускается и быстро возвращается влево к началу следующей строки, после чего возобновляется просмотр букв.

Н. — Одним словом, если я правильно понял, каждый передаваемый по телевидению кадр соответствует странице книги? И таких страниц прочитывают по 25 в секунду?

Л. — Совершенно верно.

Н. — Но при скорости 25 страниц в секунду я бы прочитал несколько тысяч страниц полного собрания сочинений Виктора Гюго всего за каких-нибудь несколько минут!.. А какое количество строк содержит телевизионная страница, я хочу сказать — кадр, и сколько букв умещается в каждой строке? Иначе говоря, сколько там точек или элементарных участков поверхности?

Я предчувствую, что твои ответы объяснят чудовищную ширину полосы видеочастот.



Отсутствие международного стандарта

Л. — Твоя интуиция, Незнайкин, тебя не подвела. Теперь же я должен уведомить тебя об отсутствии в области телевидения хорошей международной стандартизации. Характеристики передачи, увы, весьма различны и зависят от страны, где эта передача производится. Так, если в странах Европы частота кадров составляет 25 кадров в секунду, то в американских странах она достигает 30. Это различие объясняется тем, что на нашем континенте частота тока осветительной сети 50 Гц, а по ту сторону Атлантического океана 60 Гц.

Но еще более важно разнообразие стандартов в вопросе количества строк в кадре. В Европе за основную характеристику приняли четкость изображения в 625 строк в кадре, а во Франции, кроме передач с четкостью 625 строк, ведутся передачи и с четкостью 819 строк. В Америке четкость изображения составляет 525 строк.

Н. — Я знаю, что единства нет и в области цветного телевидения: американские страны и Япония приняли систему, носящую название NTSC, тогда как европейцы разделились между франко-советской системой SECAM и западногерманской системой PAL.

Л. — Да, мой друг. В наше время, когда прогресс техники обеспечивает все более тесные связи между всеми странами мира и это происходит благодаря быстрому развитию авиации и радио, народы оказались разделенными не только вследствие неудачного строительства Вавилонской башни (и недостаточного распространения практики такого международного языка, как эсперанто), но и различиями в телевизионных стандартах.

Вернемся, однако, к нашим кадрам, разлагаемым на 625 строк. При передаче 25 кадров в секунду скорость передачи строк достигает 625 х 25 = 15625 строк в секунду.


Полоса видеочастот

Н. — А сколько «точек» содержит каждая строка?

Л. — Ширина телевизионного кадра на одну треть больше его высоты (рис. 173). Следовательно, если мы предположим, что каждый элемент изображения представляет собой крохотный квадрат, сторона которого равна расстоянию между двумя соседними строками, то количество таких квадратов в строке будет на одну треть больше количества строк в кадре. Следовательно, при разложении изображения на 625 строк каждая из них содержит 833 элемента.



Рис. 173.Ширина Ш телевизионных кадров на одну треть больше их высоты В.


Н. — Позволь мне подсчитать, сколько таких элементов передается в одну секунду. В секунду передается 15625 строк, и каждая из них содержит 833 элемента, это составляет…

Боже мой! Я получил больше 13 миллионов точек в секунду. Чтобы их передать, требуется видеосигнал, имеющий такое чудовищное количество периодов в секунду.