Удивительная биологическая система
Биологический пример записи информации на малых масштабах заставил меня поразмыслить об открывающихся возможностях. Биология не просто записывает информацию; она производит с ней действия. Биологическая система может быть невероятно малой. Большинство клеток крошечные, но очень активные; они образуют различные субстанции, они повсюду, они ерзают, и извиваются, и проделывают всякие удивительные вещи — и все в очень малом пространстве. Кроме этого, они сохраняют информацию. Рассмотрим вероятность того, что мы способны сделать вещь настолько малой, насколько хотим — мы можем изготовить объект, который на этом уровне маневрирует!
Создание объектов очень малого размера может быть обусловлено даже экономическими причинами. Позвольте напомнить вам о некоторых проблемах компьютеров. В компьютерах мы храним гигантский объем информации. Я упоминал раньше о долговременной форме записи, где я записывал все с помощью распределения металла по поверхности. Для компьютеров значительно более интересен способ записи, стирания и новой записи чего-нибудь еще. (Обычно мы не хотим тратить попусту материал, на котором уже была произведена запись. Но если мы запишем все это в очень малом пространстве, не будет никакой разницы — после прочтения запись можно выбросить. Ваши затраты на материал ничтожно малы.)
Миниатюризация компьютера
Не знаю, как практически сделать это в малом масштабе, но я знаю, что компьютеры слишком велики — они занимают целые комнаты. Почему бы нам не сделать их очень маленькими, сделать маленькие провода, маленькие элементы — все в миниатюре? Например, проводки должны состоять из 10 или 100 атомов в диаметре, схемы — несколько тысяч ангстрем в поперечнике. Все, кто анализировал логическую теорию компьютеров, доходили до очень интересных возможностей компьютеров — насколько они усложнятся при изменении на несколько порядков их размеров. Если бы они имели в миллион раз больше элементов, они могли бы принимать решения. У них было бы время рассчитать оптимальный способ выполнения предлагаемой задачи. Они могли бы исходя из собственного опыта выбрать лучшую методику анализа, а не ту, которую мы им задаем. И во многих других отношениях они обладали бы качественно новыми свойствами.
Когда я вижу лицо знакомого человека, я сразу понимаю, что видел его раньше. (Правда, мои друзья скажут, что я выбрал неудачный пример для иллюстрации. Во всяком случае, я способен отличить человека от яблока.) Пока не существует машины, которая с той же скоростью по фотографии лица сможет распознать, что это именно человек; и еще в меньшей степени — что это тот самый человек, которого вы уже показывали, если только это не та же картинка. Если изменилось лицо или я ближе или дальше от него, если изменилось освещение — я в любом случае его различу. Маленький компьютер, который я ношу в голове, с легкостью способен это сделать. Число элементов в моей черепной коробке огромно по сравнению с числом элементов в наших «удивительных» компьютерах. А наши механические компьютеры такие большие, а элементы в них микроскопические. Я хочу сделать нечто субмикроскопическое.
Если мы хотим сделать компьютер, который обладает всеми этими удивительными качественными сверхвозможностями, то его размер, возможно, будет равен Пентагону. В этом кроется ряд неудобств. Во-первых, он потребует слишком много материала; мировых запасов германия может не хватить для всех транзисторов системы гигантских размеров. Могут возникнуть проблемы и с образованием тепла, и потребляемой мощностью, а администрация долины Теннесси, например, будет нуждаться в запуске такого компьютера. Возникнут трудности и более практического свойства — компьютер будет ограничен некоторой скоростью. Из-за его больших размеров для перемещения информации из одного места в другое потребуется конечное время. Информация не может перемещаться со скоростью, превышающей скорость света, поэтому, если мы хотим увеличить быстродействие компьютера, сделать его более совершенным, мы будем вынуждены уменьшать его размеры.
Но существует масса возможностей сделать его меньше. Я не вижу в физических законах ничего такого, что запрещало бы резко уменьшить элементы компьютера. Фактически это приведет к ряду преимуществ.
Миниатюризация путем выпаривания
Как можно сделать такое устройство? Какой процесс изготовления использовать? Одной из возможностей записи с помощью определенного выстраивания атомов могло бы стать выпаривание материала и следующего за ним изоляционного слоя. В следующем пласте выпариваем другое место провода, другой изоляционный слой и так далее. То есть вы просто выпариваете до тех пор, пока не останется блок материала, который имеет элементы — катушки, конденсаторы и прочее, причем исключительно тонких размеров.
Но я хотел бы развлечь вас и обсудить, что существуют и другие возможности. Почему бы не делать маленькие компьютеры подобно тому, как делают большие? Почему бы не сверлить отверстия, разрезать, паять, штамповать, формовать различные детали — все на исключительно малом уровне? Каковы ограничения на малый размер детали, когда вы не сможете ее больше формовать? Сколько раз, пытаясь починить что-нибудь безнадежно миниатюрное вроде наручных часиков вашей жены, вы говорили себе: «Проще натаскать блоху для этой работы!» Предлагаю для такой работы натаскать блоху, чтобы она натаскала малютку-клеща. Существует ли возможность сделать маленькие, но подвижные машины? Они могут быть полезными или бесполезными, но их изготовление, безусловно, выглядит забавно.
Рассмотрим любую машину, например автомобиль, и зададимся вопросом о проблеме изготовления аналогичной крошечной машинки. Предположим, что в конкретном дизайне автомобиля нам нужна определенная точность деталей, скажем, нам нужна точность 4/10000 дюйма. Если детали не требуют большой точности, например, для цилиндра и тому подобных простых форм, работать с ними одно удовольствие. Но если я делаю слишком маленькую вещь, меня должны заботить атомные размеры; я не могу составить круг из «мячиков», если круг слишком мал. Если я допущу ошибку, соответствующую 4/10000 Дюйма, что соответствует ошибке в 10 атомов, выходит, я смогу уменьшить размеры автомобиля в 4000 раз, приблизительно до 1 мм в поперечнике. Очевидно, что если вы переконструируете автомобиль так, чтобы он работал со значительно большими допусками — что не так уж невозможно, — то сможете сделать устройство гораздо меньшего размера.
Интересно понять, какие особенности связаны с такими маленькими машинками. Во-первых, детали испытывают примерно одинаковые напряжения, силы эффективно проходят в области, которые вы уменьшаете, так что веси силы инерции относительно не важны. Иначе говоря, сопротивление материала становится гораздо больше, пропорционально уменьшению масштаба. Например, напряжение и растяжение махового колеса от центробежной силы будут одинаково пропорциональны уменьшению размера, если только скорость вращения возрастает в той же пропорции. С другой стороны, металлы, которые мы используем, имеют зернистую структуру; это особенно усложняет ситуацию на малых расстояниях из-за неоднородности материала. Пластик, стекло и другие материалы, имеющие аморфную природу, значительно более однородны, так что следует строить наши машинки из этих материалов.
Существуют проблемы, связанные с электрической частью системы — с медными проводами и магнитными деталями. Магнитные свойства на очень малых масштабах не такие, как на больших: на малых размерах затрагивается образование доменов. Большой магнит состоит из миллионов доменов, на малых масштабах магнит может включать только один домен. Электрическое оборудование не просто уменьшается до определенного масштаба; его необходимо переконструировать. Я не вижу никаких препятствий к тому, чтобы его переконструировать и заставить работать.
Проблемы со смазкой
Смазка обладает некоторыми интересными особенностями. Эффективная вязкость масел будет повышаться пропорционально уменьшению размера (если увеличить скорость до максимально возможного значения). Если мы не слишком сильно увеличим скорость и заменим масло керосином или некоторой другой жидкостью, проблема перестанет быть безнадежной. На самом деле мы можем и вовсе отказаться от смазки! У нас много дополнительных сил. Пусть подшипники работают сухими; они не нагреваются в процессе работы, поскольку из такого маленького устройства тепло уходит очень-очень быстро. Такая быстрая потеря тепла будет препятствовать взрыву бензина, поэтому невозможно внутреннее возгорание машины. При охлаждении можно использовать другие химические реакции, идущие с высвобождением энергии. Внешняя подача электроэнергии будет, вероятно, более удобной для таких маленьких машинок.
В чем состоит практическая польза таких машин? Кто знает? Конечно, маленький автомобильчик был бы полезен для миниатюрных существ, например, клещей — но я полагаю, что наше христианское милосердие не простирается столь далеко. Однако можно отметить возможность изготовления миниатюрных элементов для компьютеров на полностью автоматизированных фабриках с токарными станками и другими приборами, предназначенными для изготовления малых форм. Маленький токарный станок не может точно соответствовать такому же большому. Апеллирую к вашему воображению — найдите усовершенствования в дизайне, позволяющие получить преимущества для создания вещей малого масштаба, причем полностью автоматизированный процесс лучше всего отвечает управлению производством такого уровня.
Мой друг Альберт Р. Хиббс[21] предлагает очень интересную возможность применения приборов относительно малого масштаба. Он утверждает, что, хотя это и дикая идея, интересно было бы попробовать аппараты малых размеров в хирургии, если вы готовы проглотить хирурга. Вы помещаете механического хирурга в кровеносный сосуд, он проходит прямо в сердце и «осматривается» вокруг. (Информация должна отслеживаться.) Он обнаруживает, какой клапан поврежден, берет маленький нож и надрезает его. Другие маленькие машинки можно перманентно встраивать в тело человека, чтобы помочь правильно функционирующему органу.