Ракетные двигатели — страница 11 из 15

км/час. Это значит, что мощный звук от полета ракеты доносится лишь после ее падения. Здесь уже не удастся уловить приближение ракеты с помощью звукоулавливателей, обычно применяющихся в авиации или морском флоте, для этого потребуются совсем другие методы. Такие методы основаны на применении вместо звука радиоволн. Ведь радиоволна распространяется со скоростью света — наибольшей скоростью, возможной на земле. Эта скорость, равная 300 000 км/сек, конечно, более чем достаточна, чтобы отметить приближение самой быстролетящей ракеты.

С большой скоростью полета ракет связана еще одна проблема. Дело в том, что при больших скоростях полета в атмосфере, вследствие торможения и сжатия воздуха, набегающего на ракету, температура ее корпуса сильно повышается. Расчет показывает, что температура стенок описанной выше ракеты должна достигать 1000–1100 °C. Испытания показали, правда, что в действительности эта температура значительно меньше из-за охлаждения стенок путем теплопроводности и излучения, но все же она достигает 600–700 °C, т. е. ракета нагревается до красного каления. С увеличением скорости полета ракеты температура ее стенок будет быстро расти и может стать серьезным препятствием для дальнейшего роста скорости полета. Вспомним, что метеориты (небесные камни), врывающиеся с огромной скоростью, до 100 км/сек, в пределы земной атмосферы, как правило, «сгорают», и то, что мы принимаем за падающий метеорит («падающую звезду») есть в действительности только сгусток раскаленных газов и воздуха, образующийся в результате движения метеорита с большой скоростью в атмосфере[12]. Поэтому полеты с весьма большими скоростями возможны лишь в верхних слоях атмосферы, где воздух разрежен, или за ее пределами. Чем ближе к земле, тем меньше допустимые скорости полета.

Фиг. 30. Схема устройства двигателя ракеты.


Схема двигателя ракеты представлена на фиг. 30. Обращает на себя внимание относительная простота этой схемы по сравнению с обычными поршневыми авиационными двигателями[13]; в особенности характерно для ЖРД почти полное отсутствие в силовой схеме двигателя движущихся частей. Основными элементами двигателя являются камера сгорания, реактивное сопло, парогазогенератор и турбонасосный агрегат для подачи топлива и система управления.

В камере сгорания происходит сгорание топлива, т. е. преобразование химической энергии топлива в тепловую, а в сопле — преобразование тепловой энергии продуктов сгорания в скоростную энергию струи газов, вытекающих из двигателя в атмосферу. Как изменяется состояние газов при течении их в двигателе показано на фиг. 31.

Давление в камере сгорания равно 20–21 ата, а температура достигает 2 700 °C[14]. Характерным для камеры сгорания является огромное количество тепла, которое выделяется в ней при сгорании в единицу времени или, как говорят, теплонапряженность камеры. В этом отношении камера сгорания ЖРД значительно превосходит все другие известные в технике топочные устройства (топки котлов, цилиндры двигателей внутреннего сгорания и другие). В данном случае в камере сгорания двигателя в секунду выделяется такое количество тепла, которое достаточно для того, чтобы вскипятить более 1,5 тонны ледяной воды! Чтобы камера сгорания при таком огромном количестве выделяющегося в ней тепла не вышла из строя, необходимо интенсивно охлаждать ее стенки, как, впрочем, и стенки сопла. Для этой цели, как это видно на фиг. 30, камера сгорания и сопло охлаждаются горючим — спиртом, который сначала омывает их стенки, а уже затем, подогретый, поступает в камеру сгорания. Эта система охлаждения, предложенная еще Циолковским, выгодна также и потому, что тепло, отведенное от стенок, не теряется и снова возвращается в камеру (такую систему охлаждения называют поэтому иногда регенеративной). Однако одного только наружного охлаждения стенок двигателя оказывается недостаточно, и для понижения температуры стенок одновременно применяется охлаждение их внутренней поверхности. Для этой цели стенки в ряде мест имеют небольшие сверления, расположенные в нескольких кольцевых поясах, так что через эти отверстия внутрь камеры и сопла поступает спирт (около 1/10 от общего его расхода). Холодная пленка этого спирта, текущего и испаряющегося на стенках, предохраняет их от непосредственного соприкосновения с пламенем факела и тем снижает температуру стенок. Несмотря на то, что температура газов, омывающих изнутри стенки, превышает 2500 °C, температура внутренней поверхности стенок, как показали испытания, не превышает 1 000 °C.

Камера сгоранияГорловина соплаВыходное сечение сопла
Диаметр, мм950403735
Давление, кг/см221111,03
Температура, °абс300027001650
Скорость, м/сек010002150

Фиг. 31. Изменение состояния газов в двигателе.


Топливо подается в камеру сгорания через 18 горелок-форкамер, расположенных на ее торцевой стенке. Кислород поступает внутрь форкамер через центральные форсунки, а спирт, выходящий из рубашки охлаждения, — через кольцо маленьких форсунок вокруг каждой форкамеры. Таким образом обеспечивается достаточно хорошее перемешивание топлива, необходимое для осуществления полного сгорания за то очень короткое время пока топливо находится в камере сгорания (сотые доли секунды).

Реактивное сопло двигателя изготовлено из стали. Его форма, как это хорошо видно на фиг. 30 и 31, представляет собой сначала сужающуюся, а потом расширяющуюся трубу (так называемое сопло Лаваля). Как указывалось ранее, такую же форму имеют сопла и пороховых ракетных двигателей. Чем объясняется такая форма сопла? Как известно, задачей сопла является обеспечение полного расширения газа с целью получения наибольшей скорости истечения. Для увеличения скорости течения газа по трубе ее сечение должно вначале постепенно уменьшаться, что имеет место и при течении жидкостей (например, воды). Скорость движения газа будет увеличиваться, однако, только до тех пор, пока она не станет равной скорости распространения звука в газе. Дальнейшее увеличение скорости в отличие от жидкости станет возможным только при расширении трубы; это отличие течения газа от течения жидкости связано с тем, что жидкость несжимаема, а объем газа при расширении сильно увеличивается. В горловине сопла, т. е. в наиболее узкой его части, скорость течения газа всегда равна скорости звука в газе, в нашем случае около 1000 м/сек. Скорость же истечения, т. е. скорость в выходном сечении сопла, равна 2100–2200 м/сек (таким образом удельная тяга составляет примерно, 220 кг сек/кг).

Подача топлива из баков в камеру сгорания двигателя осуществляется под давлением с помощью насосов, имеющих привод от турбины и скомпонованных вместе с нею в единый турбонасосный агрегат, как это видно на фиг. 30. В некоторых двигателях подача топлива осуществляется под давлением, которое создается в герметических топливных баках с помощью какого-либо инертного газа — например, азота, хранящегося под большим давлением в специальных баллонах. Такая система подачи проще насосной, но, при достаточно большой мощности двигателя, получается более тяжелой. Однако и при насосной подаче топлива в описываемом нами двигателе баки, как кислородный, так и спиртовой, находятся под некоторым избыточным давлением изнутри для облегчения работы насосов и предохранения баков от смятия. Это давление (1,2–1,5 ата) создается в спиртовом баке воздухом или азотом, в кислородном — парами испаряющегося кислорода.

Оба насоса — центробежного типа. Турбина, приводящая насосы, работает на парогазовой смеси, получающейся в результате разложения перекиси водорода в специальном парогазогенераторе. В этот парогазогенератор из особого бачка подается перманганат натрия, который является катализатором, ускоряющим разложение перекиси водорода. При запуске ракеты перекись водорода под давлением азота поступает в парогазогенератор, в котором начинается бурная реакция разложения перекиси с выделением паров воды и газообразного кислорода (это так называемая «холодная реакция», применяющаяся иногда и для создания тяги, в частности, в стартовых ЖРД). Парогазовая смесь, имеющая температуру около 400 °C и давление свыше 20 ата, поступает на колесо турбины и затем выбрасывается в атмосферу. Мощность турбины затрачивается полностью на привод обоих топливных насосов. Эта мощность не так уже мала — при 4000 об/мин колеса турбины она достигает почти 500 л. с.

Так как смесь кислорода со спиртом не является самореагирующим топливом, то для начала горения необходимо предусмотреть какую-либо систему зажигания. В двигателе воспламенение осуществляется с помощью специального запала, образующего факел пламени. Для этой цели применялся обычно пиротехнический запал (твердый воспламенитель типа пороха), реже использовался жидкий воспламенитель.

Запуск ракеты осуществляется следующим образом. Когда запальный факел поджигается, то открывают главные клапаны, через которые в камеру сгорания поступают самотеком из баков спирт и кислород. Управление всеми клапанами в двигателе осуществляется с помощью сжатого азота, хранящегося на ракете в батарее баллонов высокого давления. Когда начинается горение топлива, то находящийся на расстоянии наблюдатель с помощью электрического контакта включает подачу перекиси водорода в парогазогенератор. Начинает работать турбина, которая приводит насосы, подающие спирт и кислород в камеру сгорания. Тяга растет и когда она становится больше веса ракеты (12–13 тонн), то ракета взлетает. От момента зажигания запального факела до того, как двигатель разовьет полную тягу, проходит всего 7-10 секунд.