В 1903 г. Циолковский опубликовал работу «Исследование мировых пространств реактивными приборами»[9] — первую в мире научную работу о космических путешествиях с помощью ракетных кораблей. В этой работе он подробно описал проект разработанного им ракетного корабля с установленным на нем жидкостно-реактивным двигателем. Двигатель должен был работать на жидком углеводороде (бензин, керосин и т. д.) в качестве горючего и жидком кислороде — в качестве окислителя (фиг. 25). Эта схема двигателя предвосхищает проекты, осуществленные только через 40 лет после выхода в свет книжки Циолковского.
Следует отметить, что Циолковский разрабатывал не только проблемы далекого будущего, связанные с космическими кораблями, но и написал ряд работ, посвященных применению ракетных и воздушно-реактивных двигателей на самолетах. Ему принадлежит пророческое заявление, сбывающееся у нас на глазах: «За эрой аэропланов винтовых должна следовать эра аэропланов реактивных». Это проникновенное утверждение ученого было сделано тогда, когда еще ни один реактивный самолет не поднимался в небо, мало того, когда в большинстве стран к самой идее создания реактивного самолета относились как к утопической затее.
Фиг. 25. Космический ракетный корабль Циолковского (1903 г.).
Циолковский, являвшийся пионером в области ракетоплавания, родоначальником ракетной авиации, стал главой советской школы, идейным вдохновителем большой группы советских ученых в области ракетной техники.
Несколько позже, и вначале независимо, от Циолковского, над проблемами ракетоплавания работал талантливый ученый-самоучка изобретатель Ю. В. Кондратюк, ряд новых вопросов разрешил рано умерший энтузиаст ракетного дела инженер Ф. А. Цандер, много сделал проф. В. П. Ветчинкин и другие русские исследователи, конструкторы, инженеры, посвятившие себя работе в области ракетной техники. Именно благодаря их самоотверженному труду советская наука и техника в этой новой и столь многообещающей области занимает ведущее место.
Вопреки официальной буржуазной науке, замалчивающей и извращающей истинную роль русских ученых, ученые всего мира неоднократно признавали приоритет русской науки в области ракетоплавания и ведущую роль в ней Циолковского. Вот, например, что писал Циолковскому в свое время видный немецкий ученый Оберт, руководивший там работами по ракетной технике: «Вы зажгли огонь… и мы приложим все усилия, чтобы исполнилась величайшая мечта человечества».
Все работы Циолковского, и в первую голову его работы по космонавтике, были проникнуты высокими идеями гуманизма. Хорошо сказал о Циолковском академик Ферсман: «Борьба за космическую ракету была для него лишь одним из путей к созданию нового человеческого общества и нового человека».
Неудивительно, что немецко-фашистские захватчики, временно заняв Калугу, город, где жил и трудился Циолковский, варварски разрушили дом-музей великого ученого, с любовью сохранявшийся после его смерти советским народом.
Топливо для жидкостно-реактивного двигателя
Важнейшие свойства и характеристики жидкостно-реактивного двигателя, да и сама конструкция его, прежде всего зависят от топлива, которое применяется в двигателе.
Основным требованием, которое предъявляется к топливу для ЖРД, является высокая теплотворная способность, т. е. большое количество тепла, выделяющееся при сгорании 1 кг топлива[10]. Чем больше теплотворная способность, тем, при прочих равных условиях, больше скорость истечения и тяга двигателя. Более правильным является сравнение различных теплив не по их калорийности, а непосредственно по скорости истечения, которую они обеспечивают в равных условиях, или, что то же самое, по удельной тяге.
Помимо этого главного свойства топлив для ЖРД к ним обычно предъявляются и некоторые другие требования. Так например, большое значение имеет удельный вес топлива, так как запас топлива на самолете или ракете обычно ограничивается не его весом, а объемом топливных баков. Поэтому чем плотнее топливо, т. е. чем больше его удельный вес, тем больше по весу войдет топлива в те же топливные баки и, следовательно, будет больше продолжительность полета. Важно также, чтобы топливо не вызывало коррозии, т. е. разъедания ржавчиной, деталей двигателя, было просто и безопасно в хранении и перевозке, не было дефицитным по источникам сырья.
Наиболее часто в настоящее время в ЖРД применяются так называемые двухкомпонентные топлива, т. е. топлива раздельной подачи. Эти топлива состоят из двух жидкостей, хранящихся в отдельных баках; одна из этих жидкостей, обычно называемая горючим, чаще всего представляет собой вещество, принадлежащее к классу углеводородов, т. е. состоит из атомов углерода и водорода, а иногда содержит и атомы иных химических элементов — кислорода, азота и других. Горючим этот компонент (составную часть) топлива называют потому, что при его сгорании, т. е. соединении с кислородом, выделяется значительное количество тепла.
Другой компонент топлива, так называемый окислитель, содержит кислород, необходимый для сгорания, т. е. окисления горючего, почему этот компонент и получил название окислителя. Окислителем может служить чистый кислород в жидком состоянии, а также озон или какой-либо кислородоноситель, т. е. вещество, содержащее кислород в химически связанном виде: например, перекись водорода, азотная кислота и другие кислородные соединения. Как известно, в воздушно-реактивных двигателях, как и в обычных двигателях внутреннего сгорания, окислителем служит кислород атмосферы.
В случае двухкомпонентного топлива обе жидкости по отдельным трубопроводам подаются в камеру сгорания, где и происходит процесс горения, т. е. окисления горючего кислородом окислителя. При этом выделяется большое количество тепла, вследствие чего газообразные продукты сгорания приобретают высокую температуру.
Наряду с двухкомпонентными топливами существуют и так называемые однокомпонентные, или унитарные, топлива, т. е. топлива, представляющие собой одну жидкость. Однокомпонентным топливом может служить либо смесь двух веществ, реагирующих лишь в определенных условиях, которые создаются в камере, либо какое-нибудь химическое вещество, при некоторых условиях, обычно в присутствии соответствующего катализатора, разлагающееся с выделением тепла. Таким однокомпонентным топливом является, например, высоко-концентрированная (крепкая) перекись водорода.
Перекись водорода в качестве однокомпонентного топлива имеет лишь ограниченное применение. Это объясняется тем, что при реакции разложения перекиси водорода с образованием паров воды и газообразного кислорода выделяется лишь сравнительно небольшое количество тепла. Вследствие этого скорость истечения оказывается относительно невысокой, практически она не превышает 1200 м/сек. Так как температура реакции разложения невелика (около 500 °C), то такую реакцию обычно называют «холодной», в отличие от реакций со сгоранием, хотя бы с той же перекисью водорода в качестве окислителя, когда температура бывает в несколько раз больше («горячие» реакции). Мы потом познакомимся со случаями использования «холодной» реакции разложения перекиси водорода.
Практически все существующие жидкостно-реактивные двигатели работают на двухкомпонентном топливе. Однокомпонентные топлива не применяются, так как при значительной теплотворной способности, большей чем 800 кал/кг, они взрывоопасны. Состав топлива, т. е. выбор определенной пары «горючее-окислитель», может быть при этом самым различным, хотя в настоящее время предпочтение отдается нескольким определенным комбинациям, получившим наиболее широкое применение. Вместе с тем производятся энергичные поиски лучших топлив для ЖРД, и в этом отношении действительно имеются огромные возможности.
Применяемые в настоящее время двухкомпонентные топлива обычно делятся на самореагирующие, или самовоспламеняющиеся, и несамореагирующие, или топлива принудительного зажигания. Самовоспламеняющееся топливо, как показывает само название, состоит из таких компонентов «горючее — окислитель», которые при смешении их в камере сгорания двигателя самовоспламеняются. Реакция горения начинается сразу же после соприкосновения обоих компонентов и идет до полного израсходования одного из них. Несамовоспламеняющееся топливо требует специальных приспособлений для воспламенения смеси, т. е. для начала реакции горения. Эти запальные приспособления — впрыск каких-нибудь самовоспламеняющихся жидкостей, различные пиротехнические запалы, для сравнительно маломощных двигателей — электрическое зажигание и другие, — необходимы, однако, только при запуске двигателя, так как затем новые порции топлива, поступающего в камеру сгорания, воспламеняются от уже существующего в камере постоянного очага горения или, как говорят, факела пламени.
В настоящее время применяются как самовоспламеняющиеся, так и несамовоспламеняющиеся топлива и отдать предпочтение какому-либо одному из этих двух видов затруднительно, так как обоим типам топлива свойственны серьезные недостатки.
Несамовоспламеняющиеся топлива представляют большую опасность в эксплоатации, так как из-за неполадок в зажигании при запуске двигателя или возможных перебоев в горении при его работе, в камере сгорания даже за доли секунды накапливаются большие количества топлива. Это топливо, представляющее собой сильно взрывчатую смесь, затем воспламеняется, что чаще всего ведет к взрыву и катастрофе.
С другой стороны, известные самовоспламеняющиеся топлива обычно менее калорийны, чем несамовоспламеняющиеся. Кроме того, они должны применяться совместно с добавочными веществами, обеспечивающими энергичное начало и дальнейшее протекание реакции горения. Эти добавочные вещества, так называемые инициирующие вещества и катализаторы, добавляемые либо к окислителю, либо к горючему, усложняют эксплоатацию топлива, так как оно становится при этом неоднородным (приходится считаться с расслаиванием и другими свойствами неоднородных жидкостей). Пожалуй,