возвести перемычки между новым и старым тоннелями, чтобы можно было направить воду по новому пути и приступить к ремонту старого. Первая перемычка должна была появиться на расстоянии 800 м от начала тоннелей, вторая — на расстоянии 2,6 км.
Но с распадом СССР финансирование было прекращено, и строительство заморозили. К 1995 году проходчиками Тульской строительной организации было пройдено всего 1615 м. Причем забетонировано было только 140 м, остальную часть нового тоннеля временно закрепили железобетонными тюбингами. Недостроенный тоннель стал медленно, но неуклонно разрушаться. Те, кто отвечал за водоснабжение Ялты, забили тревогу. Были созданы межведомственные комиссии с участием ведущих специалистов десятков ведомств, которые подтвердили: в незаконченном тоннеле
…наблюдается интенсивная деформация временного крепления по всей длине горной выработки. На отдельных участках горизонтальное смещение элементов временного крепления в 20 раз превышает допустимые нормы. Консервация или приостановление строительства нового тоннеля невозможны, так как он находится в непосредственной близости от действующего. Его разрушение неминуемо приведет к дальнейшему разрушению действующего водовода, а то и к полному прекращению подачи воды. На действующем водоводе достаточно небольшого обвала, чтобы авария привела к экологической катастрофе. На некоторых участках разрушен лоток, по которому течет вода.
Что же предложили специалисты? В качестве временной меры было достаточно отремонтировать в недостроенном тоннеле 643 м временного крепления и «одеть» в железобетонную «рубашку» 1475 м водовода; после этого соединить его со старым и пустить воду в обход самого разрушенного участка. Ориентировочная стоимость этих работ — около 3 млн гривен. Для окончания же строительства нового водовода нужно было изыскать в госбюджете около 100 млн гривен.
Для гарантированного обеспечения Южного берега водой, была принята Комплексная программа социально-экономического развития Большой Ялты как курорта государственного значения. В программе предусматривался комплекс мер по строительству новых и реконструкции действующих объектов водообеспечения: реконструкция быстротока и наращивание плотины Загорского водохранилища, реконструкция водовода от Загорского до Счастливинского водохранилища, реконструкция Южного портала действующего тоннеля и завершение строительства нового, наращивание плотин Счастливинское-1 и Счастливинское-2, а также строительство Солнечногорского водохранилища и Зеленевского водохозяйственного комплекса.
В 2001 году, когда из госбюджета Украины в качестве субвенции было выделено 2,2 млн гривен, строители СУ-528 полностью освоили эти деньги, благодаря чему «одели» в бетонную «рубашку» еще 400 м выработки.
Однако устойчивое водоснабжение Большой Ялты в перспективе до 2005 года не могло быть гарантировано из-за отсутствия должного финансирования.
Пока ведется разработка альтернативных путей водоснабжения, Ялтинский водоводный тоннель все еще эксплуатируется. Сейчас сооружение находится в критическом состоянии, и, по отзывам специалистов, даже слабое землетрясение в три балла способно оставить Большую Ялту без воды.
Если отправиться к гидроузлу, чтобы взглянуть на сооружение своими глазами, то дорога начнется из долины Бельбека в районе села Аромат. Первые километры пути, безусловно, порадуют чистотой и ухоженностью, но по мере приближения к Главной гряде, пейзажи постепенно станут походить на кадры из постапокалиптического боевика. Следы былого величия все еще просматриваются, несмотря на разруху, свойственную постсоветскому периоду. Вид самого водохранилища производит двоякое впечатление: монументальное сооружение в окружении красивейших вершин Крыма, но, увы, не в самом лучшем состоянии. Северный вход тоннеля обнесен забором, за которым территорию патрулирует охранник в камуфляжной форме.
Первая и последняя в СССР солнечная электростанция (СЭС) была построена в Ленинском районе, неподалеку от города Щелкино, на побережье Азовского моря в 1985 году. Сейчас от нее остались только обслуживающие здания, поле с опорами от зеркальных рефлекторов… и макет станции в Политехническом музее в Москве.
Нефтяные кризисы 1973 и 1979 годов поставили ряд развитых стран — импортеров нефти в весьма сложное положение, многие из них приступили к созданию опытных СЭС. В 1981–1983 годах были сданы в эксплуатацию шесть сравнительно крупных солнечных электростанций: две из них расположили в Испании, и по одной — в Италии, Японии, Франции и США.
Примерно в те же годы в Крыму было начато строительство СЭС-5 с пиковой мощностью 5 МВт (такая же мощность была у первого в мире атомного реактора). Это была гелиостанция башенного типа, концепцию которой впервые выдвинули в Государственном энергетическом научно-исследовательском институте им. Г. М. Кржижановского в 50-е годы. Над проектом работало отделение рижского института «Атомтеплоэлектропроект» при участии тринадцати других проектно-конструкторских организаций Министерства энергетики и электрификации СССР. Научное руководство осуществлял Энергетический институт имени Г. М. Кржижановского Академии наук СССР. Сооружение СЭС-5 было поручено коллективу Запорожского строительного управления «Днепрострой», который в том же районе строил Крымскую атомную электростанцию. Единая промышленно-строительная база позволяла снизить стоимость обоих объектов.
СЭС-5 была задумана как экспериментальный объект и служила для того, чтобы выяснить особенности работы специфического оборудования, применяемого в электростанции, накопить опыт эксплуатации всех систем станции, выявить недостатки схемы и отдельных элементов оборудования и получить возможность в процессе освоения станции реконструировать несовершенные системы.
Проектирование СЭС-5, так же как и проектирование ряда зарубежных экспериментальных гелиостанций, велось параллельно с разработкой обоснований будущих промышленных СЭС. Для СЭС-5 такой перспективой является проект СЭС-200 (позднее СЭС-320), рассчитанный на условия Крыма. СЭС-5 разрабатывалась как модель (в масштабе мощности 1:10) одного из четырех модулей 50 МВт станции СЭС-200.
При подготовке этих проектов в 1977–1981 годах проводилось математическое моделирование работы зеркальных систем станции, рассматривались различные формы зеркального поля и структуры расположения гелиостатов. Гелиостат — это зеркало площадью в несколько квадратных метров, закрепленное на опоре и подключенное к общей системе позиционирования. То есть в зависимости от положения солнца зеркало будет менять свою ориентацию в пространстве. Площадь гелиостатов крымской СЭС составляла ни много ни мало 25,5 м2.
Оптимальной, как и в исследованиях зарубежных авторов, признана радиально-круговая шахматная компоновка с переменным радиальным шагом между концентрическими рядами. Отличие оптической системы СЭС-5 от зарубежной «Solar-1» состояло в том, что глобальная форма поля представляла собой правильное круговое кольцо, а не эллипс. Подобные детали на уровне экспериментальной СЭС являлись одним из главных вопросов оптимизации оптических систем крупных промышленных СЭС.
Расчет зеркального поля СЭС-5 был проведен Энергетическим институтом имени Г. М. Кржижановского и НПО «Солнце» АН ТССР. Конструкция гелиостатов СЭС-5, состоящих из 45 зеркальных фацет, разработана Проектно-конструкторским бюро Главэнергостроймеханизации и изготовлена Чеховским опытным заводом «Гидростальконструкция» Минэнерго СССР при участии заводов Минстанкопрома и Минхиммаша. Отражательная способность зеркал, изготовленных Минстройматериалов СССР, составляет 0,71.
Первое пробное включение генератора станции СЭС-5 состоялось в сентябре 1985 года. В тот момент функционировало 420 гелиостатов.
В центре большого поля диаметром 500 м была расположена башня высотой 89 м. В ее верхней части находился паровой котел в виде цилиндра высотой 7 м и диаметром 7 м. Номинальная температура воды в котле достигала 250 °C.
Основная и самая трудоемкая задача — это позиционирование всех зеркал станции так, чтобы в любой момент все отраженные от них лучи были нацелены на котел. Каждый гелиостат (а когда станция полностью вступила в строй, их было 1600), оснащался электрическими приводами зенитного и азимутального вращения. ЭВМ, управляющая работой станции, при помощи электроприводов корректировала положение гелиостатов таким образом, чтобы котел всегда был освещен.
После того как зеркала нагревали воду в котле, пар подавался на турбину, которая вращала ротор генератора. Так солнечная энергия превращалась в электрическую. Турбина и генератор находились на земле, в специальном помещении.
Одновременно часть высокотемпературной пароводяной смеси аккумулировалась в двух специальных емкостях тепловых аккумуляторов объемом по 1000 м3 каждый. В случае плохой погоды, когда солнце скрыто за облаками, или же ночью он способен был обеспечить работу станции на стандартной мощности в течение 3–4 часов плюс еще около 10 часов в режиме пониженной мощности (примерно 50 %).
При эксплуатации этой станции всплыло на поверхность множество трудностей. Одна из них — система наведения отражателей практически полностью (95 %) потребляла энергию, вырабатываемую станцией. Также возникали трудности с мытьем зеркал. В журнале «Смена» в 1989 году писали:
В качестве альтернативы «мирному атому» обычно называют солнечные, ветровые станции. Но если реально оценивать положение дел, перспективы тут туманные. По соседству с атомной работает экспериментальная солнечная. Ее проектная мощность — всего 5 МВт (для сравнения: один реактор — 1000 МВт). Но сейчас она больше энергии потребляет, чем производит. А себестоимость киловатт-часа… 34 рубля! Согласны платить? Какого-то прорыва в технологии ожидать трудно, это видно из сопоставления двух цифр. Если в прошлом году на строительство АЭС было выделено 60 млн рублей, то на работы по развитию всех нетрадиционных источников энергии в Крыму — всего 200 тысяч… Недавно появилась новая альтернатива: использовать для получения энергии сероводород, поднимающийся из глубин Черного моря и грозящий серьезными неприятностями. Но при таком нищенском финансировании надеяться на энергию солнца, ветра, биогаза и т. д. несерьезно.