Расшифрованная жизнь — страница 84 из 88

. Мне казалось, наша инициатива окажет даже более благотворное и долгосрочное воздействие, чем секвенирование генома человека.

В течение двух лет я летал туда и обратно, присоединяясь к команде «Чародея-2», собиравшей образцы в морях от Галифакса (Новая Шотландия) до тропических областей на востоке Тихого океана. Одно из наших плаваний – через Панамский канал к острову Кокос и далее к Галапагосским островам – особенно запомнилось мне: я сочетал занятия геномикой с написанием этой книги и подводным плаванием с акулами, причем все это происходило под пристальными взглядами телекамер. Невероятно было ощущать себя участником экспедиции, отчасти вдохновленной знаменитыми плаваниями кораблей «Бигль» и «Челленджер»[9].

Для получения ДНК мы отбирали пробы воды через каждые 200 морских миль и пропускали ее через всё более тонкие фильтры с целью выделения бактерий, а затем и вирусов. Фильтры хранились в холодильниках на борту, после чего доставлялись самолетом в Роквилл для секвенирования. Там группа под руководством Шибу Юсефа, используя феноменальные вычислительные мощности (включая суперкомпьютер, применявшийся для съемок мультфильма «Шрек» и моделирования взрывов водородной бомбы), реконструировала и анализировала огромный объем данных по фрагментам микробной ДНК, полученной методом дробовика. Каждый фрагмент ДНК сравнивался со всеми остальными для получения кластеров связанных последовательностей и прогнозирования белков. В Институте Солка (Сан-Диего, Ла-Хойя) Джерард Маннинг также проводил сопоставление этой информации с базой данных Pfam, включающей характерные профили всех известных семейств белков, с помощью турбо-программы компании Time Logic. Его лаборатория провела почти 350 миллионов сопоставлений, что на порядок или два больше, чем за всю предшествовавшую историю. Окончательные подсчеты заняли две недели, но стандартному компьютеру для выполнения этой задачи потребовалось бы более сотни лет. От этой сокровищницы данных захватывало дух. В трех статьях, опубликованных в 2007 году в журнале PLoS Biology группой моих сотрудников под руководством Дуга Руша, описывалось открытие 400 новых видов микроорганизмов и 6 миллионов новых генов, что удваивало количество генов, известных на тот момент науке{224}.

Экспедиция оказала глубокое воздействие на устоявшиеся идеи о древе жизни. Например, белковый пигмент, с помощью которого глаза распознают свет, раньше считался сравнительно редким. Наш улов генов показал, однако, что все морские организмы в поверхностных слоях воды вырабатывают протеородопсины, способные обнаруживать свет различного цвета. Эти белки помогают микробам использовать лучи солнца подобно растениям, только без фотосинтеза, усваивая свет путем закачивания заряженных атомов в свое подобие солнечных батарей. В различных средах встречаются синий и зеленый варианты этих батарей: синий характерен для открытого океана, например для Саргассова моря с водой цвета индиго, а микробы с «зелеными» батареями обитают в прибрежных зонах.

Во время кругосветного плавания мои сотрудники открыли новые белки, защищающие микроорганизмы от ультрафиолетового излучения, а также излечивающие повреждения от него. Мы обнаружили, что некоторые белки чаще встречаются в океане, чем на суше. Например, наземные грамположительные бактерии известны прежде всего своими чрезвычайно стойкими спорами, однако у их морских родственников эта особенность отсутствует. Жгутики, гибкие «конечности», обеспечивающие поступательное движение бактерий, и фимбрии, короткие выступы, с помощью которых бактерии осуществляют обмен генетическим материалом (эквивалент секса в мире микробов), также встречаются в океанах реже. Мы с удивлением обнаружили, что многие виды белков, считавшиеся характерными лишь для одного биологического царства, оказались более распространенными. Возьмем, например, глютаминсинтетазу (ГС), белок, играющий важную роль в метаболизме азота. Мы обнаружили более 9 тысяч последовательностей, отвечающих за синтез ГС или близких к нему белков. Многие из них относились к ГС типа II, одному из трех основных типов данного белка. Этот результат был довольно неожиданным, поскольку ГС типа II преимущественно связана с эукариотами (такими, как наши собственные клетки), а не с «более примитивными» видами жизни (бактериями и вирусами), осевшими на подвергавшихся анализу фильтрах.

Из всех изученных семейств белков наиболее интересными оказались ферменты киназы, регулирующие многие базовые клеточные функции в нашем теле. Они контролируют активность белков и небольших молекул в клетках, присоединяя к ним фосфатные химические группы. В силу важности киназ они являются основными «мишенями» при лечении раковых и других заболеваний. Раньше считалось, что для различных биологических царств характерны различные семейства киназ. Наши собственные клетки предположительно использовали эукариотические протеинкиназы (эПК), а бактерии – гистидинкиназы. Мы, однако, обнаружили, что киназы типа эПК встречаются в бактериях даже чаще, чем гистидинкиназы. Выяснилось также, что почти во всех семействах киназ основные десять свойств белка совпадают, то есть являются определяющими характеристиками киназы. Данные по генам, общим для большого числа организмов, могут, таким образом, использоваться как нечто вроде машины времени. Мы можем выявить, какие киназы присутствовали в организме общего предка и, в данном конкретном случае, прийти к выводу о том, что несколько семейств киназ существовали перед разделением жизни на три царства, произошедшим миллиарды лет назад.

Поразительное открытие сделала экспедиция «Чародей-2» и в науке, изучающей изменения климата. Для некоторых участков океана, как выяснилось, характерна повышенная концентрация организмов, активно поглощающих двуокись углерода. Традиционно считалось, что эти популяции возникают в областях повышенного содержания питательных веществ. Реальность может оказаться куда сложнее. Пониженное содержание микроорганизмов в некоторых морях, по-видимому, объясняется деятельностью вирусов-бактериофагов. Если нам удастся разобраться в этих взаимоотношениях и научиться ингибировать вирусы либо повысить устойчивость бактерий к фагам, станет возможным резкое повышение количества организмов, поглощающих углекислый газ и смягчающих изменения климата. Благодаря этой новой концепции появляются и другие удивительные возможности. На основании открытия миллионов новых генов мы приступаем к формированию «набора инструментов», который позволит начать новую фазу эволюции. Микробы играют важнейшую роль в земной атмосфере. Деревья поглощают углекислый газ благодаря фотосинтезу. То же самое делают и океаны, хотя и по другим механизмам. Удастся ли нам спроектировать новые организмы, которые могли бы заселить системы очистки выбросов на теплоэлектростанциях, поглощая двуокись углерода? Можно ли приручить микроорганизмы, поставив их уникальную биохимию на службу святому делу очистки атмосферы? Можно ли убедить микробные легкие планеты дышать глубже? Все эти идеи не так безумны, как кажутся.

Далее, кислородом, которым мы дышим, мы обязаны изменениям в популяции микроорганизмов, произошедшим более 2 миллиардов лет назад. Эти микроорганизмы были вынуждены избавиться от кислорода, чтобы избежать отравления, и их «кислородные отходы» стали частью атмосферы. Возможно, для борьбы с последствиями сжигания ископаемого топлива почвенные микробы следует «убедить» поглощать побольше углерода. Сообщества микроорганизмов, которые формируют состав легких Земли, можно сконцентрировать в шахтах, глубоких водоносных слоях или в пустынях.

В первую очередь необходимо расшифровать геномы микроорганизмов, растений и тысяч других существ, которые борются с загрязнением окружающей среды, будь то углекислый газ, радионуклиды или тяжелые металлы. Большая часть таких геномов уже секвенирована, в основном, моими методами, а многие из них – моими же сотрудниками. Затем я использовал способ изучения микроорганизмов Саргассова моря для исследования воздуха, которым дышат на Манхэттене жители Нью-Йорка. В настоящее время этот город является испытательным полигоном для моего проекта «Геном воздуха», в котором я надеюсь выявить бактерии, грибы и вирусы, попадающие в наши легкие при каждом вдохе. Секвенирование многих других микроорганизмов продолжается, даже пока я пишу эту книгу. На основе информации, полученной при изучении огромного количества микроорганизмов, я сумею не только изучить новые способы мониторинга качества воздуха и противодействовать биотерроризму, но и узнать, можно ли использовать эти организмы и их «умную химию» для ликвидации последствий загрязнения окружающей среды.

Если говорить о попытках противодействия глобальному потеплению, у нас уже есть длинный список перспективных для изучения организмов. Торфяные болота содержат Methylococcus capsulatus, участвующие в круговороте парникового газа метана. Rhodopseudomonas – это почвенные бактерии, преобразующие углекислый газ в вещества клеток, а газообразный азот в аммиак; они также могут выделять водород. Nitrosomonas europaea и Nostoc punctiforme тоже принимают участие в фиксации азота. Из множества морских микроорганизмов наибольшую роль в трансфере углерода в океанские глубины играют диатомовые водоросли Thalassiosira pseudonana. С помощью всех этих микроорганизмов мы сумеем управлять процессами загрязнения нашей атмосферы.

Но это еще не всё! Давайте пойдем дальше. Возможно ли применить наши сегодняшние знания для проектирования и создания, химическим путем, хромосом новых видов и первых саморазмножающихся искусственных форм жизни – для разработки новых альтернативных источников энергии? Это предложение не может не вызвать беспокойства биофундаменталистов, но является, однако, естественным продолжением тысячелетних усилий человечества по использованию биологических процессов в промышленном производстве. Биотехнология уходит корнями в глубь веков, когда путем сбраживания винограда впервые был получен этиловый спирт, первое биотопливо.