Расширенный фенотип — страница 46 из 84

& Мейс 1982). Но меня здесь интересует не само наличие эффекта, а теория Шермана, его объясняющая. Он правильно обращает внимание на то, что большое количество хромосом уменьшает разброс в доле общих генов между родными братьями. В предельном случае, если у вида есть только одна пара хромосом, не совершающая кроссинговер, то любая пара полных родных братьев будет иметь или все (идентичные по происхождению), или ни одного, или половину своих генов, в среднем 50%. С другой стороны – при сотне хромосом число общих генов (идентичных по происхождению) среди родных братьев будет узко распределено вблизи тех же средних 50%. Кроссинговер усложняет результат, но остаётся верным то, что большое количество хромосом у вида влечёт низкий генетический разброс среди родных братьев этого вида.

Из этого следует, что если бы социальные рабочие насекомые захотели бы варьировать степень поддержки своих братьев в зависимости от количества общих генов, это было бы им легче сделать в случае, если бы количество хромосом у их вида было небольшим, и труднее – если бы наоборот. Такая пристрастная дискриминация рабочими была бы вредна для приспособленности царицы, которая «предпочла бы» беспристрастный уход за её потомством. Поэтому Шерман предполагает, что большое число хромосом у эусоциальных насекомых – есть адаптация, призванная заставить «репродуктивные интересы потомства ближе совпадать с таковыми их матери». Между прочим не нужно забывать, что рабочие не будут единодушны. Каждый рабочий мог бы благоволить к молодым братьям, напоминающим его, но другие рабочие будут склонны сопротивляться этому фаворитизму – по той же самой причине, по какой ему будет сопротивляться царица. Рабочих нельзя рассматривать как монолитную оппозиционную царице партию на такой же манер, как рассматривали их Триверс и Хар (1978) в своей теории конфликта по поводу соотношения полов.

Шерман очень справедливо приводит три слабости его гипотезы, но у неё есть две более серьёзные проблемы. Во-первых, пока мы осторожно не квалифицируем её далее, гипотеза выглядит опасно приближающейся к ошибке, которой я отметил как «Непонимание номер 11» (Докинз 1979a) или «Ошибка туза пик» (глава 10). Шерман предполагает, что степень сотрудничества внутри вида связана со «средней долей общих аллелей» (мой акцент) имея в виду, что он должен думать о вероятности того, что ген «сотрудничества» – общий (см. также Партридж & Nunney 1977). При последнем предположении, его гипотеза – как она сейчас сформулирована – не работала бы (Seger 1980). Шерман мог спасти его гипотезу от этой специфической критики, привлекая эффект «самораспознавания подмышек». Я не буду обстоятельно объяснять эту аргументацию, ибо подозреваю, что Шерман принимает её. (Обязательный момент – эффект подмышек может привлекать слабое сцепление в пределах семьи, в то время как эффект зелёной бороды требует неравновесного сцепления или плейотропии. Если рабочие, проинспектировав себя, выказывают фаворитизм тем из их репродуктивных братьев, которые обладают теми особенностями, которые они ощущают общими для них, то обычные эффекты сцепления будут достаточными, и гипотеза Шермана сможет уйти от «ошибки туза пик». Кстати это также позволило бы уйти от первого из возражений самого Шермана о том, что гипотеза «зависит от существования аллелей, которые позволяют их предъявителям распознавать эти аллели». «Такие аллели распознавания не были обнаружены…», и что кстати довольно неправдоподобно. Шерман мог облегчить себе жизнь, привязывая его гипотезу к подмышкам, а не к эффекту зелёной бороды.

На вторую трудность гипотезы Шермана обратил моё внимание Дж. Мейнард Смит (личное общение). Принимая «подмышечную» версию теории, действительно можно понять, как рабочие в ходе отбора могли выработать самоинспекцию, и фаворитизм к тем их репродуктивным братьям, которые обладают общими с ними индивидуальными особенностями. Также верно, что отбор сформировал бы у царицы подавление этого фаворитизма (если бы он был), например феромональной манипуляцией. Но чтобы быть отобранным, любой такой ход со стороны царицы должен был бы возникнуть как мутация. Было бы это верно для мутации, увеличившей число хромосом царицы? Нет, не было бы. Увеличение числа хромосом изменило бы давления отбора, действующие на фаворитизм рабочего, и спустя много поколений могло бы произвести эволюционное изменение во имя преимущества царицы вообще. Но это не помогло бы изначально мутантной царице, чьи рабочие будут следовать их собственной генетической программе, и не обращая внимание на изменения в давлениях отбора. Изменения в давлениях отбора оказывают свои эффекты на более длинном масштабе поколений. Нельзя ожидать, что царица развернёт программу искусственного отбора ради долгосрочной выгоды будущих цариц! Гипотезу можно спасти от этого возражения, предполагая, что большое число хромосом – не адаптация для облегчения царице манипуляции рабочими, а скорее – преадаптация. Те группы, у которых по другим причинам оказалось много хромосом, с большей вероятностью развивали эусоциальность. Шерман упоминает эту версию гипотезы, но не видит причин оценивать её более позитивно, чем версию материнской манипуляции. В заключение, гипотеза Шермана может быть сделана теоретически значимой, если её выразить более в терминах преадаптации, чем адаптации, и в терминах эффекта подмышек, а не эффекта зелёной бороды.

Может эффект зелёной бороды и неправдоподобен, но поучителен. Исследователь родственного отбора, который сначала понимает гипотетический эффект зелёной бороды, а затем подходит к теории родственного отбора в терминах её сходств и различий с «теорией зелёной бороды», вряд станет жертвой многих соблазнительных ошибок, которые предлагает теория родственного отбора (Докинз 1979a). Главенство модели зелёной бороды убедит его в том, что альтруизм к родственникам – не самоцель, но нечто, чем животные занимаются в соответствии с некоей умной математикой, которую полевые исследователи не понимают. Вернее, родство обеспечивает лишь один способ поведения генов, словно они распознают свои копии в других индивидуумах и благоволят им. Сам Гамильтон по этому поводу высказался решительно: «… Родство должно рассматриваться как лишь один путь получения позитивной регрессии генотипа у получателя, и… именно эта позитивная регрессия жизненно необходима для альтруизма. Таким образом, концепция итоговой приспособленности – более общая, чем “родственный отбор”» (Гамильтон 1975a, с. 140–141).

Гамильтон здесь использует то, что он ранее описал как «расширенное значение итоговой приспособленности» (Гамильтон 1964b, с. 25). Обычное значение итоговой приспособленности, значение, на котором сам Гамильтон строил его детальную математику, неспособно к обработке эффекта зелёной бороды, и мошенников типа генов мейотического драйва. И всё потому, что она твёрдо привязана к идее об индивидуальном организме как «носителе» или «максимизирующейся сущности». Гены-мошенники требуют рассмотрения в качестве эгоистичных, максимизирующихся по их произволу объектов, и они являются сильным оружием против парадигмы «эгоистичного организма». Нигде это не иллюстрируется лучше, чем в собственных Гамильтоновских изобретательных расширениях теории соотношения полов Фишера (Гамильтон 1967).

Мысленный эксперимент «Зелёная борода» поучителен и далее. Любой, размышляющий о генах как о буквально молекулярных сущностях, рискует быть обманутым пассажами типа «Что есть эгоистичный ген? Это не только лишь отдельная физическая частица ДНК… Это – все точные копии конкретной частицы ДНК, распределенные по всему миру… дистрибутивное агентство, существующее во многих различных индивидуумах сразу… Ген может помогать точным копиям себя, которые находятся в других телах». Вся теория родственного отбора опирается на эту общую предпосылку, но это мистично и неправильно – полагать, что гены помогают копиям друг друга потому, что эти копии – молекулы, идентичные самому себе. Мысленный эксперимент «зелёная борода» помогает объяснять это. Шимпанзе и гориллы настолько генетически схожи, что ген у одного вида может быть физически идентичен во всех его молекулярных подробностях гену в другом. Действительно ли молекулярная идентичность – достаточная причина ожидать, что отбор одобрит гены у одного вида «распознающим» свои копии у другого вида, и протягивающим им руку помощи? Конечно нет, хотя наивное приложение модели «эгоистичного гена» на молекулярный уровень могло бы навести нас на иной вывод.

Естественный отбор на уровне гена относится к соревнованию аллелей за конкретный хромосомный слот в общем генофонде. Ген зеленой бороды в генофонде шимпанзе – не кандидат ни на какой-то слот в какой-то хромосоме гориллы, и ни есть какая-то из её аллелей. Поэтому ему безразлична судьба его структурно идентичной копии в генофонде гориллы. (Ему может быть небезразлична судьба его фенотипически идентичной копии в генофонде гориллы, но это не имеет никакого отношения к молекулярной идентичности.) Насколько данный аргумент уместен, гены шимпанзе, и гены гориллы – не копии друг друга одном важном смысле. Они – копии друг друга только в тривиальном смысле – случается, что они имеют идентичную молекулярную структуру. Бессознательные, механистические законы естественного отбора не дают нам оснований ожидать, что они будут помогать молекулярным копиям только потому, что это – молекулярные копии.

Наоборот, оправданы наши ожидания увидеть гены, помогающие молекулярно различающимся аллелям в своих локусах внутри генофонда вида, если они имеют те же самые фенотипические эффекты. Фенотипически нейтральная мутация в локусе изменяет молекулярную идентичность, но не делает ничего, чтобы ослабить возможный отбор в пользу взаимной помощи. Альтруизм зелёной бороды может расширять сферу действия фенотипов зелёной бороды в популяции, даже при том, что гены помогали другим генам, не являющимся строгим копиям себя в молекулярном смысле. Это – сфера действия фенотипов, в объяснении которых мы заинтересованы, а не сфера действия молекулярных конфигураций ДНК. И если кто-то из читателей полагает, что последнее замечание противоречит моему основному тезису, то я, должно быть не сумел сделать мой основной тезис достаточно ясным!