Расширенный фенотип — страница 61 из 84

алях постройки термитника после перехода репродуктивного процесса от первичных родителей к вторичным.

Но давайте проигнорируем проблемы вытекающие из перехода к вторичным репродуктивным особям, и ограничимся в нашем гипотетическом генетическом исследовании достаточно молодыми колониями, где все рабочие термиты представляют собой полных родных братьев. Оказывается, некоторые варьирующие особенности термитников могут в значительной степени контролироваться одним локусом, в то же время другие будут полигеничны – т.е. контролироваться во многих локусах. В этом нет никаких отличий от обычной диплоидной генетики, но у нашей новой квази-тетраплоидной генетики есть теперь некоторые сложности. Предположим, что поведенческий механизм, участвующий в выборе цвета грунта, используемого в строительстве, генетически варьирует (цвет выбран для совместимости с ранее проделанными мысленными экспериментами, хотя, опять же – было бы реалистичнее избегать визуальной признаков, так как термиты очень мало используют зрение. Если угодно, мы можем предположить, что выбор делается на основании химического состава, а цвет грунта оказывается случайно коррелированным с ним. Этим мы снова подчеркиваем тот факт, что наш способ маркировки фенотипических признаков является вопросом произвольного удобства). Для простоты предположим, что выбор грунта находится под влиянием диплоидного генотипа выбирающей особи рабочего в одном простом локусе менделевского типа; причём выбор тёмного грунта доминирует над выбором светлого. Тогда, если в колонии будет какая-то часть рабочих, предпочитающих тёмный цвет, и какая-то – светлый, то итоговый цвет термитника возможно будет промежуточным. Конечно такие простые генетические предположения весьма маловероятны. Они эквивалентны упрощающим предположениям, которые мы обычно делаем для объяснения основ обычной генетики, и я их делаю здесь для того, чтобы аналогично объяснить принципы работы такой науки, как «расширенная генетика».

В рамках этих предположений мы можем тогда описать ожидаемые расширенные фенотипы, рассматривая цвет грунта лишь как результат перестановок различных возможных генотипов пары основателей колонии. Например, все колонии, основанные гетерозиготным по гену цвета грунта царём и гетерозиготной царицей будут содержать «тёмногрунтовых» и «светлогрунтовых» рабочих в отношении 3:1. Итоговым расширенным фенотипом будет термитник, построенный из трёх частей тёмного грунта и одной части светлого, а потому почти (но не совершенно), тёмного цвета. Если выбор цвета грунта находится под влиянием многих генов во многих локусах, то можно ожидать, что «тетраплоидный генотип» колонии может влиять на расширенный фенотип в качестве добавки. Огромный размер колонии приведёт тому, что он будет действовать как статистический усреднённая схема, делая термитник в целом расширенной фенотипической экспрессией генов царской пары, действующих через поведение нескольких миллионов рабочих, каждый из которых носит различный диплоидный образец этих генов.

Цвет грунта – удобный для рассмотрения признак, потому что сам грунт смешивается в простой аддитивной манере: смешайте тёмный и светлый грунт – и получите цвет хаки. Поэтому нам было легко предсказать результат, предположив что каждый рабочий действует самостоятельно, выбирая грунт исходя из его собственных цветовых предпочтений (или химического состава, ассоциированного с цветом), детерминированных его личным диплоидным генотипом. Но что мы можем сказать о характеристиках морфологии всего термитника, скажем – о соотношении длины и ширины основания? Это не тот признак, который отдельный рабочий может определять самостоятельно. Каждый отдельный рабочий должен повиноваться поведенческим правилам, результат которых – просуммированная деятельность более чем тысячи особей, – постройка термитника правильной формы и заданных размерностей. Сложность здесь та же самая, с какой мы уже сталкивались, рассматривая эмбриональное развитие обычного диплоидного многоклеточного тела. Эмбриологи всё ещё трудятся над проблемами такого рода, ибо они необъятны. Можно предложить некоторые близкие аналогии с развитием термитника. Например, эмбриологи часто прибегают к концепции химического градиента; есть свидетельства, что у Macrotermes форма и размеры камеры, вмещающей «царя» и «царицу» детерминированы градиентом феромонов около тела царицы (Bruinsma & Leuthold 1977). Каждая клетка в развивающемся эмбрионе ведет себя так, как будто «знает», где она находится в теле, и растёт приобретая форму и физиологию, соответствующую этой части тела (Wolpert 1970).

Временами эффекты мутаций легко интерпретировать на клеточном уровне. Например – мутация, затрагивающая пигментацию кожи, оказывает вполне очевидный локальный эффект на каждую клетку кожи. Другие же мутации радикально воздействуют на сложные признаки. Хорошо известен пример «гомеотической» мутации дрозофилы Antennapedia, одной из тех, которые побуждают появляться полноценной конечности там, где должна быть видоизменённая конечность – антенна. Чтобы изменение в одном единственном гене могло привести к таким важным, в то же время – упорядоченным изменениям в фенотипе, оно должно производить своё вредоносное действие на весьма высоком уровне в иерархической цепи команд. Скажем, если у одного рядового солдата «едет крыша», то ведёт себя безумно лишь он один; но если генерал теряет рассудок, то целая армия ведёт себя стратегически безумно – например воюет с союзником вместо врага. При этом каждый отдельный солдат в этой армии повинуется приказам совершенно нормально и разумно, и его индивидуальное поведение будет неотличимым от такового у солдата в армии с нормальным генералом.

Возможно что отдельный термит, работающий в уголке большого термитника, подобен клетке в развивающемся эмбрионе, или отдельному солдату, неустанно повинующемуся приказам, стратегических целей которых он не понимает. В нервной системе отдельного термита нет ничего, что было бы хотя бы отдалённо эквивалентно полному образу законченного термитника (Уилсон, 1971 с. 228). Каждый рабочий снабжён маленьким комплектом инструментов поведенческих правил, и он вероятно побуждается к выбору того или иного из них местными стимулами, исходящими уже выполненной от работы, кто бы ни выполнял эту работу – он или другие; стимулы исходят из существующего состояния термитника в непосредственной близости от рабочего («децентрализованная регуляция», Grasse 1959).[28]. Для наших целей точные поведенческие правила не имеют значения, но вкратце они могли быть вроде такого: «Если вы натыкаетесь на кучу грунта с определённым феромоном на ней, положите новую порцию грунта на вершину её». Важный момент в таких правилах – они сугубо локальны. Глобальный проект всего термитника появляется только как просуммированные последствия тысяч повиновений микроправилам (Hansell 1984). Особый интерес представляют локальные правила, ответственные за формирование глобальных свойств, таких как длины основания компасного термитника. Как отдельные рабочие «узнают», что они достигли границы на плане местности? Возможно, механизм этого в чём-то подобен механизму, посредством которого клетки на поверхности печени «знают» что они находятся не в глубине её. В любом случае, независимо от возможных деталей локальных поведенческих правил, они определяют полную форму и размер термитника, и возможно подчинены генетическим вариациям всей популяции в целом. Крайне вероятно, собственно почти неизбежно, что и форма и размер термитников компасных термитов возникли в ходе естественного отбора – точно также, как и любая особенность телесной морфологии. Они могут возникнуть лишь посредством отбора мутаций строительного поведения, действующих на уровне локальных «правил поведения» отдельных рабочих в дифференцированных ситуациях строительства, защиты и пр.

Здесь возникает специфическая проблема, которая не возникает ни при обычном эмбриогенезе многоклеточного тела, ни в случае смешивания светлого и тёмного грунта. В отличие от клеток многоклеточного тела, рабочие генетически неидентичны. В случае с тёмным и светлым грунтом было легко предположить, что генетически гетерогенная рабочая сила просто будет строить термитник из смеси грунтов. Но результаты деятельности рабочей силы, генетически гетерогенной в отношении одного из поведенческих правил, воздействующих на полную форму термитника, могли бы быть любопытны. По аналогии с нашей простой менделевской моделью выбора грунта, в колонии могли бы иметься рабочие, придерживающихся двух различных правил определения границы термитника, скажем – в отношении три к одному. Забавно вообразить себе, что такая бимодальная колония могла бы построить термитник со странной двойной стеной и рвом между ними! Однако более вероятно, что правила, которым повинуются особи, включали бы условие повиновения меньшинства решениям большинства, чтобы появилась только одна определённая стена. Они могли бы работать подобно «демократическому» выбору нового участка для гнезда роем медовых пчёл, что наблюдал Линдауэр (1961).

Пчёлы-разведчики покидают рой, висящий в дереве, и исследуют новые участки, пригодные для постоянного поселения – например, дуплистые деревья. Каждый разведчик возвращается, и танцует на поверхности роя, используя хорошо известный код фон Фриша, указывающий направление и расстояние до только что исследованного участка, подходящего для перемещения роя. Энергичность танца показывает оценку разведчиками достоинств участка. Затем туда вылетают новые пчёлы, и исследуют его сами, и если они «одобряют выбор», то они также танцуют «танец поддержки» по возвращении. Через несколько часов разведчики группируются в несколько «партий», защищающих свой участок для гнездования. Наконец, мнение меньшинства становится всё менее и менее заметным, так как поддержка переходит к танцам большинства. Когда подавляющее большинство в отношении одного участка наконец достигается, весь рой снимается и летит туда, чтобы основать дом.