Расширяя границы Вселенной — страница 21 из 43

деференту, в центре которого находится Земля. Сочетание этих двух движений — по эпициклу и деференту — позволило не только качественно, но и количественно описать видимое движение планет. В современной астрономии также используют понятие эпицикл, когда говорят о траектории движения Солнца (или другой звезды) относительно точки, движущейся с таким же периодом по круговой орбите вокруг центра Галактики.

1.29. Периодическое движение планет представлялось в виде комбинаций равномерных круговых движений по деферентам и эпициклам. Этот подход аналогичен современному разложению периодической функции в ряд Фурье.

1.30. Основное наблюдаемое движение небесных светил — суточное вращение — выглядит как круговое; вероятно, по аналогии, и другие виды движений космических тел тоже представлялись круговыми. Под эту идею подводился и философский принцип: всё небесное считалось идеальным, а «идеальной» фигурой считалась окружность.

1.31. Движение верхних планет по главным эпициклам и нижних по деферентам есть отражение годового движения Земли вокруг Солнца. Период обращения верхней планеты по эпициклу равен одному году, центра эпицикла по деференту — сидерическому периоду обращения планеты. Для нижней планеты период обращения по деференту равен одному году. Уменьшение относительных размеров эпициклов отражало уменьшение размеров петель — чем дальше планета от Земли, тем меньшую петлю она описывает. Для далёких планет угловой размер петли примерно равен углу, под которым с этой планеты видна орбита Земли.

1.32. Движение планеты по эпициклу считалось равномерным. Но центр самого эпицикла перемещался по деференту сложнее: его угловая скорость принималась постоянной относительно не центра деферента, а некой вспомогательной точки (её называли точкой экванта), удалённой от центра на некоторое расстояние. При этом на такое же расстояние от центра, но в противоположном направлении, считалась смещённой и сама Земля (см.: Бронштэн, 1988, с. 116). Как видим, система Птолемея была не совсем геоцентрической.

1.33. Гиппарх предположил, что центр Земли и центр орбиты Солнца не совпадают. Это позволило правильно представить изменение расстояния от Земли до Солнца в течение года. Кроме этого, по Птолемею, движение Солнца представляется равномерным не из центра его круговой орбиты — деферента, а из особой точки — точки экванта, расположенной симметрично центру Земли относительно центра деферента.

1.34. В точке P планета имеет самое быстрое прямое движение, так как здесь складывается её скорость по эпициклу и скорость эпицикла по деференту. В точке A планета имеет обратное движение, которому соответствует её положение в противостоянии. В точках между P и A, ближе к A, находятся точки стояний, где результирующая скорость планеты направлена к Земле или от Земли.

1.35. Нижние планеты кажутся земному наблюдателю «качающимися» наподобие маятника относительно Солнца, поэтому возникло естественное предположение, что они движутся вокруг Солнца, а оно, в свою очередь, совершает в течение года полный оборот вокруг Земли. Движение же верхних планет казалось связанным не с Солнцем, а с Землёй, поскольку они способны занимать произвольное положение относительно Солнца.

1.36. Тихо Браге в 1588 г. предложил компромиссную модель мира, в которой Солнце и Луна обращаются вокруг неподвижной Земли, а вокруг Солнца обращаются остальные пять известных тогда планет. Идея подобной модели мира была высказана ещё учеником Платона — Гераклидом Понтийским (388–315 до н. э.).

1.37. Движение Солнца по эклиптике, суточное движение звёзд, движение метеорных тел вне атмосферы Земли, движения ИСЗ и Луны.

1.38. В грубом приближении траектории движения планет относительно Земли есть эпициклоиды.

1.39. Вокруг Солнца по эллиптической орбите движется центр масс системы Земля — Луна, а каждый из этих объектов движется по своей орбите вокруг общего центра масс. Используя понятие относительности движения, можно считать, что гелиоцентрическая орбита Луны есть результат сложения её эллиптического движения вокруг Земли и переносного, вместе с Землёй, — вокруг Солнца. Результирующая орбита Луны представляет эллипс, в фокусе которого Солнце, а форма которого немного искажена влиянием Земли. Во всех своих точках гелиоцентрическая орбита Луны обращена вогнутостью к Солнцу. С геометрической точки зрения эта траектория, как и у планет, близка к эпициклоиде.

1.40. Траектории движения спутников планет — гигантов относительно Солнца близки к эпициклоиде и отличаются от неё тем сильнее, чем больше эксцентриситет орбиты спутника.

1.41. Модель мира Коперника заменила принцип геоцентризма на противоположный ему принцип гелиоцентризма. Однако в письме- предисловии Римскому папе Коперник пытался из тактических соображений внушить ему мысль, что в силу огромного размера сферы звёзд и малости планетных орбит Земля и в гелиоцентрической системе оказывается близка к центру Вселенной.

1.42. Теория Коперника (как и предшествовавшая ей теория Птолемея) описывает весь известный к тому времени мир. Звёзды включены в общую с планетами систему. Они расположены на сфере, центром которой служит Солнце.

1.43. Идея о подвижности Земли была высказана ещё древнегреческим учёным Аристархом (310–230 до н. э.). По его мнению, Земля обращалась вокруг тела, расположенного в центре мира (но не вокруг Солнца).

1.44. Аристотель был прав, но он не учёл гигантское расстояние до звёзд. Довод Аристотеля в пользу неподвижности Земли признавался учёными в течение почти 2000 лет, до XVIII века.

1.45. Из‑за большой удалённости звёзд от Солнца размеры параллактических эллипсов, описываемых в течение года звёздами на небе, чрезвычайно малы. Впервые измерение параллактического смещения было проведено В. Я. Струве у Веги только в 1835–1837 гг. Следует отметить, что Птолемей не указывал на факт отсутствия параллактического смещения у звёзд как на доказательство неподвижности Земли, поскольку представление о практически бесконечном радиусе звёздной сферы было в его время уже общепринятым.

1.46. Коперник проводил измерения положений звёзд на небесной сфере при помощи примитивного прибора — трикветрума, состоящего из трёх деревянных линеек с делениями, закреплённых на шарнирах. Его прибор давал точность всего 10'.

1.47. Явление аберрации света, т. е. изменения направления на источник, связано только со скоростью наблюдателя и не зависит от расстояния до источника света. Светила описывают аберрационные эллипсы оттого, что в течение года меняется направление движения Земли. Для наблюдателя на данной планете все звёзды и внегалактические объекты описывают эллипсы с одинаковой большой полуосью, численное значение которой называют постоянной аберрации. Для Земли её значение равно 20,5״. С другой стороны, большая полуось параллактического эллипса зависит от расстояния до звезды. Для ближайших звёзд она не превышает 1״; для инструментов Брадлея это была недоступно малая величина.

1.48. На широте Оксфорда, где работал Брадлей, из ярких звёзд только у Дракона в то время проходила близ зенита (z = 3'), где практически отсутствует атмосферная рефракция. Положение звезды вблизи полюса эклиптики делает и параллактический, и аберрационный эллипсы близкими к окружности, что повышает точность измерений.

Кроме того, при вертикальном положении телескопа его механические деформации минимальны, а контроль положения облегчён.

1.49. Механика, кинематика. Труд Коперника отвечал на вопрос «как движутся планеты?», но причины движения планет в нём не рассматривались.

1.50. 1) Открытие системы спутников Юпитера, показавшее, что не только вокруг Земли могут обращаться космические тела.

2) Открытие фаз Венеры, в том числе фазы «полной Венеры». В системе Птолемея Венера не могла оказываться в этой фазе.

1.51. «Солнце все с собой планеты водит» в системе мира Тихо Браге: именно он модернизировал систему Птолемея, «заставив» все планеты обращаться вокруг Солнца, а само Солнце с планетами — обращаться вокруг неподвижной Земли.

1.52. Как известно, Венера в своём видимом движении не удаляется от Солнца более чем на 48°. Поэтому если бы она обращалась вокруг Земли, её фазы по своему внешнему виду напоминали бы фазы Луны либо вблизи эпохи новолуния (если бы Венера была ближе к Земле, чем Солнце), либо вблизи полнолуния (если бы Венера располагалась дальше Солнца). Но ни в том, ни в другом случаях Венера никогда не достигала бы фазы «четвертей». А Галилей видел её и в этих фазах.

1.53. Все верхние планеты из‑за удалённости почти всегда видны в фазе «полнолуния»; поэтому у них изменения фазы малозаметны. У Меркурия, как и у Венеры, наблюдается изменение фазы, но эта планета из‑за близости к Солнцу очень сложна для наблюдения: Меркурий виден с Земли всегда близко к Солнцу и низко над горизонтом; в течение года его можно наблюдать лишь в короткие интервалы времени; к тому же угловой размер Меркурия существенно меньше, чем Венеры. Учитывая качество телескопа Галилея, поразительно, что он смог заметить даже фазы Венеры.

1.54. Поговорка верна. Луна движется недалеко от эклиптики, поэтому вблизи полнолуния зимой она находится почти там же на небе, где Солнце летом — близ северной части эклиптики. Следовательно, Луна зимой повторяет дневной путь Солнца в разгар лета, т. е. (в средних широтах) восходит на северо — востоке, поднимается высоко над горизонтом на юге и заходит на северо — западе.

1.55. Число галактик на единицу площади небесной сферы (если исключить полосу Млечного Пути) практически не зависит от направления. Из этого следует, что Вселенная локально изотропна, что соответствует принципу Кузанского. Более строгий подход утверждает, что об однородной и изотропной Вселенной можно говорить только в отношении масштабов, существенно больших типичного размера скоплений галактик.

1.56. Из принципа Кузанского следует пространственная однородность Вселенной, которая подтверждена экспериментально для больших объёмов, имеющих характерный размер ~100 Мпк.