Рассказ предка — страница 66 из 133

На рис.: рогозуб (Neoceratodus forsteri).


Рандеву № 18Двоякодышащие рыбы

На рандеву № 18 (около 417 млн лет назад) в теплых мелководных морях на рубеже девонского и силурийского периодов к нам присоединяется небольшая группа наших современников. Мы встречаемся с двоякодышащими рыбами. Для них знакомство с сопредком № 18 будет менее странным, чем для нас, потому что у них много общего. Наш прародитель примерно в 185-миллионном поколении относится к лопастеперым рыбам (Sarcopterygii), которые, конечно, сильнее похожи на двоякодышащих рыб, чем на четвероногих животных.

Сейчас существует шесть видов двоякодышащих рыб: рогозуб, или баррамунда (Neoceratodus forsteri), в Австралии, американский чешуйчатник (Lepidosirenparadoxa) в Южной Америке и четыре вида протоптеров (Protopterus) в Африке. Австралийская двоякодышащая рыба выглядит как древняя лопастеперая рыба и имеет мясистые лопасти плавников, как у целаканта. У африканских и южноамериканских видов, связанных близким родством, плавники уменьшились до длинных кисточек, и эти рыбы не так похожи на лопастеперых предков. Все двоякодышащие рыбы дышат воздухом, пользуясь легкими. У австралийских двоякодышащих одно легкое, у других видов – два. Африканским и южноамериканским видам легкие помогают пережить сезон засухи. Такие рыбы зарываются в грязь и впадают в спячку, дыша сквозь отверстие в грязи. Австралийские виды обитают в постоянных водоемах, заросших водорослями. Эти рыбы набирают воздух в легкие, чтобы помочь работе жабр в бедной кислородом воде.

Современных двоякодышащих рыб, обитающих в Квинсленде, открыли в 1870 году и объединили с ископаемыми рыбами, жившими более 200 млн лет назад. Им дали общее название – цератоды (Ceratodus). Это говорит о том, как мало они изменились. Работа, опубликованная в 1949 году английским палеонтологом Томасом С. Вестоллом, показала, что, хотя двоякодышащие рыбы не менялись 200 млн лет, прежде этого времени они эволюционировали очень быстро. В каменноугольном периоде, начиная с отметки около 350 млн лет, они буквально мчались вперед, пока не остановились около 250 млн лет назад, в конце пермского периода.

Рассказ Двоякодышащей рыбы[80]

Живое ископаемое – это современное животное, сильно напоминающее древних предков. На линии, ведущей к живому ископаемому, происходит очень мало эволюционных изменений. Мы же, родственники двоякодышащей рыбы, за сотни миллионов лет, которые прошли со времени нашего разделения, сильно изменились. Но, несмотря на то, что тела двоякодышащих как бы застыли в исходном состоянии, этого нельзя сказать об их ДНК.

Лучеперые рыбы (наши обычные рыбы, например форель или окунь) за тот же период породили огромное разнообразие форм. То же самое сделали и знакомые нам тетраподы – мы уже говорили о лопастеперой рыбе, которая вышла на сушу. А вот тела самих лопастеперых рыб эволюционировали чрезвычайно медленно. Однако в то же время – и это будет главной темой данного рассказа – их генетический материал не оставался без дела. Иначе последовательности ДНК двоякодышащих рыб и целакантов были бы гораздо сильнее похожи друг на друга (и предположительно на последовательности ДНК их древних предков), чем на ДНК тетрапод и лучеперых рыб. Однако это не так.

Благодаря ископаемым известно примерное время расхождения двоякодышащих рыб, целакантов, тетрапод и лучеперых рыб. Первый раскол (около 440 млн лет назад) произошел между лучеперыми рыбами и всеми остальными. Следом отпали целаканты (около 425 млн лет назад). И остались двоякодышащие рыбы и все остальные. И, наконец, через 5-10 млн лет откололись двоякодышащие рыбы и мы, теперь зовущиеся тетраподами, продолжили эволюционный путь в одиночестве. По меркам эволюции все эти три раскола произошли примерно в одно и то же время – по крайней мере, по сравнению с периодом, в течение которого все четыре линии с тех пор эволюционировали.


Эволюционное древо, построенное методом максимального правдоподобия по данным изучения ДНК (см. «Рассказ Гиббона»). По материалам Zardoya and Meyer [324].


Рафаэль Сардойя (Испания) и Аксель Майер (Германия) построили эволюционное древо на основе последовательностей ДНК различных видов. Длина каждой ветви отображает количество эволюционных изменений в митохондриальной ДНК.

Если бы ДНК всех видов эволюционировала с одинаковой постоянной скоростью, концы ветвей по правому краю выстроились бы в линию. Однако это не так. При этом нельзя сказать, что организмы, претерпевшие минимум морфологических изменений, показаны самыми короткими ветвями. Похоже, ДНК и двоякодышащих рыб, и целакантов, и лучеперых рыб эволюционировала примерно с одинаковой скоростью. Позвоночные животные, колонизировавшие сушу, демонстрируют более высокую скорость эволюции ДНК, но и тут не видно четкой корреляции с морфологическими изменениями. Первое и второе место в этой молекулярной гонке занимают утконос и аллигатор. Но ни у одного из позвоночных не наблюдается такого количества морфологических изменений, как, например, у синего кита или (не могу сдержать гордости) у нас.

Этот рисунок иллюстрирует важный факт. Скорость эволюции ДНК не всегда постоянна, но она не коррелирует с морфологическими изменениями. Линделл Бромэм из Университета Сассекса и ее коллеги сравнили эволюционные схемы, построенные на основе морфологических изменений, с построенными на основе изменений ДНК. Результаты подтвердили идею “Рассказа Двоякодышащей рыбы”. Общая (суммарная) скорость генетической эволюции не коррелирует с морфологическими изменениями[81]. Это, правда, не значит, что она постоянна – это было бы слишком хорошо. В некоторых линиях, например грызунов и нематод, наблюдается довольно высокая общая скорость молекулярной эволюции по сравнению с ближайшими родственниками. В других линиях, например кишечнополостных, скорость молекулярной эволюции, напротив, ниже, чем у родственных линий.

“Рассказ Двоякодышащей рыбы” позволяет надеяться на то, о чем еще несколько лет назад зоологи не смели мечтать. Осторожно выбирая гены и используя доступные методы внесения поправок для линий с различными скоростями эволюции, мы сможем датировать видообразование (в миллионах лет). Эта прекрасная мечта носит имя “молекулярных часов”, и именно такой способ использован для определения большинства дат рандеву в этой книге. О “молекулярных часах” мы узнаем из “Эпилога к рассказу Онихофоры”.

Рандеву № 19Целаканты

Сопредок № 19, наш прародитель примерно в 190-миллионном поколении, жил около 425 млн лет назад, когда растения колонизировали сушу, а в море распространились коралловые рифы. Здесь мы встречаем одну из самых редких и малочисленных групп пилигримов: известен лишь один современный род целаканта, и его открытие стало для всех огромной неожиданностью. Этот эпизод хорошо описан Китом Томсоном в книге “Живое ископаемое: история целаканта”.

Целаканты были хорошо известны из палеонтологической летописи, но считалось, что они вымерли еще до динозавров. В 1938 году живой целакант попал в сети южноафриканского траулера “Нерита”. По счастливой случайности капитан Гарри Госен дружил с Марджори Кортенэ-Латимер, молодой заведующей Ист-Лондонским музеем. Госен обычно откладывал для нее интересные находки и 22 декабря 1938 года позвонил ей. Она приехала к причалу, и старый шотландец из команды показал ей груду забракованной рыбы, которая не вызвала у нее интереса. Она уже собралась уйти, когда

заметила синий плавник. И, отодвинув других рыб, увидела рыбу – самую красивую, которую я когда-либо видела. Она была пяти футов [около полутора метров] длиной, бледного сиренево-синего цвета, с переливающимися серебряными отметинами.

Мисс Кортенэ-Латимер сделала набросок рыбы и послала его ведущему южноафриканскому ихтиологу Дж. Л. Б. Смиту. Известие его ошеломило: “Не нужно особого воображения, чтобы представить себе, какой переполох вызвало бы внезапное появление перед нами исполинского динозавра…


Целаканты. Все больше данных указывает на то, что ветвь целакантов (известно два современных вида) раньше всех отделилась от двух других ветвей вымерших лопастеперых рыб.

На рис.: латимерия (Latimeria chalumnae).


И пусть целакант ростом не с динозавра, его появление во многом еще более поразительно” (см. вкладку). К сожалению, Смит не спешил приехать на место обнаружения рыбы. Не доверяя себе, он обратился к Бэрнэрду, коллеге из Кейптауна. Тот сначала отнесся ко всему скептично. Кажется, прошло несколько недель, прежде чем Смит добрался до Ист-Лондона и увидел рыбу. Тем временем бедная мисс Кортенэ-Латимер пыталась сберечь свою находку от разложения. Поскольку рыба была слишком крупная, она обертывала ее тканью, пропитанной формалином. Этого оказалось недостаточно, и пришлось сделать из рыбы чучело. Такой Смит, наконец, и увидел рыбу:

Силы небесные! Хотя я и был подготовлен, меня в первый миг словно ошеломило взрывом, ноги подкосились, тело стало чужим. Я будто окаменел. Да, никаких сомнений: чешуя, кости, плавники – самый настоящий целакант. Точно внезапно ожила рыба, умершая двести миллионов лет назад. Забыв обо всем на свете, я смотрел не отрываясь на чучело, потом робко подошел ближе, коснулся его, погладил. Жена молча следила за мной. Вошла мисс Латимер и тепло с нами поздоровалась. Только тут ко мне вернулся дар речи. Не помню точно, о чем я говорил, но смысл моих слов сводился к тому, что не может быть никаких сомнений – это он, да-да, целакант, совершенно точно! Даже я не мог больше сомневаться[82].

Смит назвал рыбу латимерией (Latimeria) в честь мисс Марджори. С тех пор еще много таких рыб было найдено в глубоких водах у Коморских островов (недалеко от Мадагаскара), а на другом краю Индийского океана, у Сулавеси, был открыт второй вид. Теперь этот род изучен очень подробно. Как всегда, не обошлось без свар и обвинений в подделке. Это часто сопровождает важные открытия, что довольно прискорбно, но, думаю, объяснимо.