которые являются красно-зелеными дальтониками, думают, что подобные траве вещи имеют цвет в значительной степени похожий на кровь. У людей двуцветный дальтонизм поражает приблизительно два процента мужчин. Не смущайтесь, кстати, фактом, что другие виды красно-зеленого дальтонизма распространены сильнее (затрагивают приблизительно восемь процентов мужчин). Этих людей называют аномальными трихроматами: генетически они - трихроматы, но один из трех видов опсинов у них не работает (Марк Ридли в «Демоне Менделя» (получившем в Америке второе название «Кооперированный ген»), указывает, что восемь процентов (или больше) относятся к европейцам и другим с хорошей историей медицины. Охотники-собиратели и другие «традиционные» общества, находящиеся ближе к переднему краю естественного отбора, показывают более низкий процент. Ридли предполагает, что ослабление естественного отбора позволило дальтонизму возрасти. Все аспекты дальтонизма рассматривает характерно оригинальным способом Оливер Сакс (Oliver Sacks) в «Острове дальтоников».).
Неравноценный кроссинговер не всегда делает вещи хуже. Некоторые X-хромосомы оказываются более чем с двумя генами опсина. Добавочные, кажется, почти всегда являются зелеными, а не красными. Рекордное число достигает двенадцати добавочных зеленых генов, выстраиваемых последовательно. Нет никаких данных, что люди с добавочными зелеными генами могут видеть немного лучше, но не все «зеленые» гены полностью аналогичны друг другу – таким образом, для человека теоретически возможно иметь не трихроматическое, а тетрахроматическое или пентахроматическое зрение. Я не знаю, проверял ли кто-либо это.
Возможно, Вам пришла беспокойная мысль. Я говорил так, как если бы приобретение с помощью мутациии нового опсина автоматически даровало бы усовершенствованное цветовое зрение. Но конечно, различия между цветовой чувствительностью колбочек невозможно использовать, если у мозга нет какого-нибудь способа узнать, какой вид колбочек посылает ему сообщение. Если бы это было достигнуто с помощью жесткой генетической коммутации – эта мозговая клетка присоединена к красной колбочке, та нервная клетка присоединена к зеленой колбочке – система работала бы, но она не могла бы справиться с мутациями в сетчатке. Как же она действует? Как мозговые клетки могут «узнать», что новый опсин, чувствительный к необычному цвету, внезапно стал доступен, и что особый набор колбочек в огромной популяции колбочек в сетчатке включил ген для того, чтобы создать новый опсин?
Кажется, единственный вероятный ответ – что мозг учится. По-видимому, он сравнивает уровни возбуждения, которые возникают в популяции колбочек в сетчатке и «замечает», что одна субпопуляция клеток возбуждается сильнее, когда он смотрит на помидоры и землянику; другая субпопуляция – когда глядит на небо; иная – на траву. Это – «игрушечное» предположение, но я считаю, что нечто подобное позволяет нервной системе оперативно приспособить генетическое изменение в сетчатке. Мой коллега Колин Блэкмор (Colin Blakemore), с которым я поднял этот вопрос, видит эту проблему как одну из семейства подобных проблем, которые возникают всякий раз, когда центральная нервная система должна приспособиться к изменению в периферии (Я ожидаю, что примерно такое же обучение должно использоваться птицами и рептилиями, увеличивающими свой диапазон цветовой чувствительности благодаря внедрению крошечных цветных капелек жира на поверхности сетчатки.).
Заключительный урок «Рассказа Обезьяны-Ревуна» – важность генной дупликации. Гены красного и зеленого опсина, несомненно, получены из одного предкового гена, который создал свою ксерокопию в другой части X-хромосомы. Дальше в прошлом, мы можем быть уверены, произошла похожая дупликация, которая отделила синий аутосомный ген (Или ультрафиолетовый, или другой, который был в те дни. По-видимому, точная цветовая чувствительность всех этих классов опсинов была так или иначе изменена за время эволюции.) от того, который должен был стать красным/зеленым геном X-хромосомы. Для генов на абсолютно разных хромосомах характерно принадлежать к одной и той же «генной семье». Генные семьи возникли при давних дупликациях ДНК, сопровождаемых разделением функций. Различные исследования выявили, что у типичного гена человека средняя вероятность дупликации приблизительно от 0.1 до 1 процента за миллион лет. Дупликация ДНК может быть постепенным событием или может быть взрывной, например, когда недавно опасный паразит ДНК, вроде Alu, распространяется повсюду в геноме, или когда геном дуплицируется целиком. (Дупликация всего генома распространена у растений, и, как предполагается, это случалось, по крайней мере, дважды в нашей родословной при возникновении позвоночных животных). Независимо от того, когда или как это случилось, случайная дупликация ДНК – один из главных источников новых генов. За эволюционное время не только гены изменяются внутри геномов. Изменяются сами геномы.
СВИДАНИЕ 7. ДОЛГОПЯТ
Ветвь долгопятов. Последние морфологические и молекулярные исследования располагают пять видов долгопятов как сестринскую группу к обезьянам, а не к ветви лемуров, как полагалось ранее.
Филиппинский долгопят (Tarsius syrichta). [Иллюстрация добавлена переводчиком.]
Мы, человекообразные странники, достигли Свидания 7 пятьдесят восемь миллионов лет назад в густых и разнообразных лесах палеоценовой эпохи. Здесь мы приветствуем небольшую эволюционную струйку кузенов, долгопятов. Мы нуждаемся в названии для ветви, которая объединяет антропоидов и долгопятов, и это – сухоносые обезьяны. Сухоносые обезьяны включают Копредка 7, возможно нашего прародителя в 6-миллионном поколении, и всех его потомков: долгопятов и обезьян.
Первое, что Вы замечаете у долгопята – его глаза. Если смотреть на череп, они – почти единственное, что мы можем заметить: «пара глаз на ногах» вполне прилично характеризует долгопята. Каждый из его глаз такого размера, как весь его мозг, и максимально широко открытые зрачки также. Глядя спереди на его череп, может показаться, что он носит пару модных, больших, если не сказать гигантских, очков. Их огромный размер делает затруднительным вращение глаз в гнездах, но долгопят, как и некоторые совы, способен решить проблему. Они поворачивает всю голову на очень гибкой шее почти на 360 градусов. Причина огромного размера их глаз та же, что у сов и ночных обезьян – долгопяты являются ночными существами. Они полагаются на лунный, звездный и сумеречный свет и должны подбирать каждый последний фотон, какой могут.
У других ночных млекопитающих есть tapetum lucidum – отражающий слой позади сетчатки, который возвращает фотоны обратно, таким образом, давая ретинальным пигментам второй шанс перехватить их. Этот выстилающий слой сетчатки облегчает отыскивание кошек и других животных ночью (Большинство ночных птиц также имеют отражающие глаза, но не совиный лягушкорот (Aegothelidae) Австралазии и не галапагосская вилохвостая чайка, Creagrus furcatus, единственная ночная чайка в мире. Согласно этой теории, если бы долгопяту удалось нарастить тапетум, он не нуждался бы в таких огромных глазах, и это было бы здорово.). Осветите фонарем пространство вокруг себя. Это привлечет внимание всяких животных поблизости, и они будут смотреть прямо на Ваш свет из любопытства. Лучи будут отражены выстилающим слоем. Иногда Вы можете определить местонахождение множества пар глаз единственным взмахом фонарика. Если бы лучи электрического света были особенностью окружающей среды, в которой эволюционировали животные, то они, возможно, не развили бы столь хорошо tapetum lucidum, поскольку это – демаскирующий признак.
У долгопята, на удивление, нет никакого tapetum lucidum. Выдвигалось предположение, что их предки, наряду с другими приматами, прошли через дневную фазу и потеряли тапетум. Это подтверждается фактом, что долгопяты обладают той же странной системой цветового зрения, что и большинство обезьян Нового света. Несколько групп млекопитающих, которые были ночными во времена динозавров, стали дневными, когда смерть динозавров сделала это безопасным. Существует предположение, что долгопяты впоследствии вернулись к ночи, но, по некоторым причинам эволюционные пути возрождения отражающего слоя были для них заблокированы. Таким образом они достигли того же результата (Определенно наибольшие глаза во всем животном мире — глаза гигантского кальмара, около фута в диаметре. Они также должны справляться с очень низкими уровнями освещенности, на сей раз не потому, что являются ночными, а потому, что настолько мало света проникает на большие глубины океана, где они обитают.) в улавливании возможно большего количества фотонов, сделав свои глаза действительно очень большими.
Другие потомки Копредка 7, обезьяны, также не имеют tapetum lucidum, и это не удивительно, принимая во внимание, что все они являются дневными существами, кроме ночных обезьян Южной Америки. И ночные обезьяны, как и долгопяты, скомпенсировали недостаток, вырастив очень большие глаза – хотя не настолько большие в пропорциональном отношении к голове, как глаза у долгопятов. Мы можем высказать хорошее предположение, что Копредок 7 также не имел tapetum lucidum и был, вероятно, дневным. Что еще мы можем сказать о нем?
Кроме того, что он был дневным, он, возможно, был весьма похож на долгопята. Причиной для такого высказывания является то, что есть несколько внушающих доверие ископаемых, названных омомидами, датируемыми тем периодом. Копредок 7, возможно, был кем-то вроде омомида, а омомиды были весьма похожи на долгопятов. Их глаза не были столь большими, как у современных долгопятов, но достаточно большими, чтобы предположить, что они были ночными животными. Возможно, Копредок 7 был дневной версией омомида, живущего на деревьях. Из его двух потомков один остался дневным и превратился в обезьян. Другой вернулся в темноту и стал современным долгопятом.