Во-вторых, науками о Вселенной выдвинут в последнее время ряд фундаментальных положений, которые представляются внутренне противоречивыми. Это дает теологам повод, с одной стороны, упрекать науку в несоответствии ее положений реальной природе, а с другой — утверждать, что противоречивость научной картины мира будто бы свидетельствует о правомерности тех глубоких и неразрешимых внутренних противоречий, которыми отличаются религиозные системы. Следовательно, в научно-атеистической пропаганде необходимо подчеркивать, что внутренние противоречия в познании мира — это не противоречия между научным положением и реальностью, а отражение в научных знаниях противоречий, присущих самой природе.
В-третьих, для утверждения в сознании людей научно-материалистического мировоззрения огромное значение имеет экспериментальное подтверждение и практическое использование научных знаний. В наши дни намного короче стал период, отделяющий момент совершения научного открытия от его практического применения. Это относится, разумеется, и к открытиям в области астрофизики и других наук о Вселенной. А использование научных знаний на практике один из наиболее весомых и действенных аргументов против религиозных взглядов и представлений.
Ученые рассказывают
Я. Б. Зельдович, академик, трижды Герой Социалистического ТрудаЧеловеческий разум проникает везде
История окружающего нас мира, история Вселенной — это вопрос, который волновал человечество начиная с самых ранних ступеней познания. Мифы и религиозные учения предполагают свои «космологические системы», свои теории эволюции Вселенной.
Научная постановка вопроса об истории Вселенной — одно из важнейших завоеваний современной науки. Астрономия использует наблюдения с помощью телескопов, исследует спектры далеких небесных тел, изучает радиоволны, приходящие из самых отдаленных областей. Выводы из этих наблюдений делаются с учетом законов природы, изученных в земных лабораториях. Мы используем данные о спектрах атомов, о законах излучения и распространения радиоволн. Мы применяем к Вселенной и к огромным скоплениям звезд теорию всемирного тяготения, проверенную в земных условиях и в Солнечной системе, в частности по движению созданных человеком космических аппаратов.
Часто спрашивают: на чем основана уверенность в том, что земные законы действуют где-нибудь на далеких звездах? Наблюдения спектров далеких звезд доказывают, что атомы, электроны, ядра там имеют те же свойства, что и на Земле и на Солнце, — значит, везде во Вселенной законы природы, физики, химии одинаковы. Конечно, эта одинаковость законов не исключает разнообразия условий и строения небесных тел — из одинаковых кирпичиков можно построить весьма различные здания.
Большим достижением нашего века является установление факта эволюции, изменяемой Вселенной. Звезды расходуют свой запас горючего — водорода. Горение здесь заключается в превращении водорода в гелий путем ядерных реакций. Удаляются друг от друга огромные скопления звезд. Частью такого скопления является и наша Галактика с ее 100 тысячами миллионов (единица и одиннадцать нулей) звезд. Иногда кратко говорят о расширении Вселенной. Нужно только помнить, что ни сама Земля, ни Солнечная система, ни Галактика не расширяются.
До сих пор речь шла о картине, установленной к середине нашего века. Новые достижения последних нескольких лет связаны с наблюдениями космического радиоизлучения, равномерно заполняющего всю Вселенную, то есть излучения, приходящего к нам со строго одинаковой силой, куда бы мы ни направили радиотелескоп. Ясно, что никакие отдельные источники радиоизлучения не дали бы такой картины.
Новое, открытое в 1965 г. излучение объясняется тем, что много миллиардов лет назад вся Вселенная была совершенно не похожа на современную. Все пространство было заполнено тем, что физики называют плазмой, — горячим газом, состоящим из электронов, ядер водорода и гелия (то есть протонов и альфа-частиц) и излучением. Частицы излучения (фотоны, раньше их называли кванты света) при этом даже преобладали. Вселенная расширялась, и в ходе этого расширения происходило постепенное изменение, остывание плазмы. Радиоволны, наблюдаемые в настоящее время, — это потомки горячего излучения в прошлом. Такой вывод подтверждается и спектром радиоволн, — теория позволяет правильно предсказывать потоки волн в разных диапазонах.
С охлаждением связано и выделение отдельных небесных тел. Всем известно, что при охлаждении теплого воздуха возникает туман: водяные пары, содержавшиеся в воздухе, превращаются в капельки воды. Нечто похожее происходит при охлаждении и с плазмой: электроны и ядра объединяются в атомы, атомы объединяются в облака газа, далее эти облака распадаются на отдельные звезды. Часть вещества и сейчас остается в форме газа.
Подробное теоретическое исследование процесса образования Галактик и звезд является одной из центральных задач астрофизики. Решить эту задачу очень трудно, но и чрезвычайно важно для научного мировоззрения. Эта задача профессионально заманчива для физика-теоретика, и я счастлив, Что принимаю участие в ее разработке и с огромным интересом слежу за успехами коллег теоретиков и за новыми наблюдаемыми данными. Каждый год приносит новые успехи в этой области. Вспоминаются слова Тютчева: «Блажен, кто посетил сей мир в его минуты роковые» («роковое» имеет здесь смысл — «решающее, грандиозное, эпохальное», но не обязательно трагическое). Хочется изменить конец этого стихотворения. Поэт говорил: «Во всем величье видишь ты закат звезды его кровавой». А мы предвидим — и видим — восход ясного солнца науки, проникающего везде и познающего все — вплоть до самых отдаленных и в пространстве, и во времени областей Вселенной.
Е. И. Парнов, кандидат химических наукВ эпицентре «большого взрыва»
На перекрестке вселенских дорог
«В те времена, когда сверху не было ничего, что называется Небом, и внизу не было ничего, что носит имя Земли, был только их отец Апсу и мать всего Тиамат (первоначальные океаны)», — учили когда-то халдейские жрецы. Потом, считали они, бог Мардук рассек Тиамат на части и сотворил всю окружающую нас природу. Но вначале, как говорил вавилонский жрец Берос, «были мрак и вода». Именно над этим мраком и водой «пребывал» (обычно переводится словом «носился») библейский дух божий, который якобы разделил потом воды и создал Небо и Землю.
Подобное чудотворное разделение вод мы встречаем почти во всех мифах о сотворении мира.
«Вначале небо (Нут) и Земля (Геб) лежали, крепко обнявшись, в первобытной воде (Ну). В день творения из вод поднялся новый бог Шу и поднял богиню Нут так высоко, что только пальцами рук и ног она могла коснуться Земли. Это и есть четыре столба, поддерживающие усеянный звездами небосвод — прекрасное тело богини». Так представляли себе рождение мира бритоголовые жрецы в дельте Нила.
А древнегреческий поэт Гесиод в своей «Теогонии» пел:
Здравствуйте, дочери Зевса, и дайте желанную песню,
Славьте священное племя бессмертных, от века живущих,
Кои от звездного неба и ночи глубокой родились,
И от Земли, и которых соленое море питало…
И все же мы очень мало знаем об истинных представлениях древних о мироздании.
Они оставили нам прекрасные сказания, в которых отражены их воззрения на людей и природу. Но как отражены? По большей части языком искусства, а ему ведь свойствен свой, особый, образный строй и удивительная наивность ребенка, открывающего для себя мир. Вот именно эту поэтическую наивность мы нередко принимаем за подлинную сердцевину синкретического знания древних. И вполне возможно, мы здесь допускаем ошибку. Иначе как же объяснить невероятный скачок от прекрасного поэтического лепета к стройным системам греческих философов или к догадкам Вед?
Но другого выхода у нас, очевидно, нет. Если мы хотим хоть что-то сказать о далеких истоках нашего знания, мы просто вынуждены обращаться к мифам и поэмам, так как другими, более достоверными источниками не обладаем. Предположим на минуту, что древние люди действительно думали так же, как говорили в своих священных песнях. Пусть Брама, который «сам себя родил и непостижим для нашего ума», сделал первобытный раствор доступным чувствам через пять стихий. Пусть бог света Ормузд создал из первичной материи сначала шесть верховных божеств, а уж потом небо, солнце, огонь и воду…
Для нас в данном случае не это важно. Важно то, что человечество издавна пыталось разрешить «вечный» вопрос, «вопрос вопросов»: как и когда возник окружающий мир, Вселенная?
Нам выпало счастье жить в грозном и прекрасном веке, когда наука раскрыла многие тайны вещества и энергии, пространства и времени, сознания и жизни. В последнее время появились и четкие, полученные экспериментально данные, которые уже позволяют нам представить себе величественную картину эволюции Вселенной. Современная теория «большого взрыва», «большой вспышки» — это не наивный миф о сотворении мира, но она не лишена известной образности, можно даже сказать, поэтичности. В самом деле…
Данные астрофизики сегодня убедительно говорят: наш мир находится в состоянии «большого взрыва», и люди со своей небольшой планеты наблюдают за тем, как «раздувается» невообразимых размеров «пузырь», имя которому Вселенная. Поскольку галактики разлетаются от нас во все стороны, условно можно сказать, что мы находимся как бы в эпицентре этого события. На «границах» Вселенной разлетающееся вещество достигает световых скоростей (300000 км/сек). Мчась по замкнутым траекториям, кванты света «наливают» внутреннюю поверхность раздувающегося «пузыря» ослепительным сиянием. Но мы не видим этих сияющих «границ» — они ведь постоянно убегают от нас со скоростью света.
Да и разве можно назвать границами то, что отделяет нас от «ничто» и уносится в «никуда»?..
Окинем же оком простирающиеся вокруг нас туманные бездны! В отличие от древних вавилонян, ученые сегодня не только пассивно наблюдают звездный мир, но и активно исследуют его, даже сумели его измерить. Достоверность, реальность, число и мера — вот что прежде всего отличает наше знание от представлений древних людей, от их легенд и мифов.
Итак, теперь известно: расширяющаяся Вселенная в данное время простирается примерно на 1010 световых лет, или на 1028 сантиметров. Цифры эти невообразимо велики. Чтобы наглядно представить себе их, понять, какие пространства мы исследуем, сидя на своей планете, достаточно сказать, что сам человек в 1026 раз меньше Вселенной, которую он дерзновенно посмел измерить. В самом деле, гамбургский математик Г. Шуберт как-то на досуге подсчитал, что 29 апреля 1902 г. в 10 часов 40 минут истек ровно 1 миллиард минут с начала нашего летосчисления. А ведь 1 миллиард — это «только» 109! Привычные земные масштабы не позволяют даже приблизительно ощущать необъятность такой разницы. И Человек велик уже одним тем, что сумел найти ее.
Обратимся теперь к другой дороге, ведущей нас в сердце мироздания, — в микромир. Самое малое из известных сегодня ученым расстояний — 10–14 сантиметров. Оно отличается от самого большого в 1042 раз. Это значит, что диаметр элементарных частиц в 1042 раз меньше диаметра Вселенной.
Давайте теперь вдумаемся в эти цифры! По сути дела, они — границы нашего познания на сегодняшний день, измеренные отрезки дорог, ведущих невообразимо далеко. 10 в 42-й степени — это столь много, что никто даже не может вразумительно разъяснить, как действительно велико такое число. Но все же попробуем представить себе его.
Допустим, что до таких размеров увеличилось число людей. Земной шар может вместить лишь 1015 человек, да и то, если они станут на планете вплотную — локоть к локтю. Подсчитано, что во всей необъятной Вселенной имеется примерно 1021 звезд. Если предположить, что у каждой звезды есть 10 планет, то мы получим число планет, близкое к 1022. Теперь, если все эти планеты заселить, подобно Земле, то есть поставить на них людей плечом к плечу, то удастся разместить на них 1037 человек. И все же это намного меньше, чем цифра «1042». Нет, не представить нам с помощью привычных образов число 1042!
Давайте теперь от пространственной характеристики исследуемого мира перейдем ко времени.
Если, например, взять самое малое из известных нам расстояний — 10–14 сантиметров, то этот путь свет успевает пройти за 10–24 секунд. Значит, это и есть на сегодня для нас самый маленький, кратчайший временной промежуток. Доступными в настоящий период ученым методами измерить его невозможно. Ну а самый большой из ныне известных нам промежутков времени — конечно же «время жизни Вселенной», то есть продолжительность ее расширения. Астрофизики подсчитали, что оно составляет 10–20 миллиардов лет — примерно 1018 секунд.
И вот что особенно интересно. Когда мы подсчитаем, какой итог дает соотношение самого малого известного нам временного промежутка с самым большим, то получим то же самое умопомрачительное число — 1042 секунд. Вот какие временные масштабы сумел теперь осмыслить ничтожный, как утверждают защитники религии, Человек, сам живущий в среднем всего 70 лет, или 109 секунд.
Кстати сказать, совпадение интервалов времени и расстояний отнюдь не случайно. Самые далекие участки Вселенной удаляются от нас со скоростью, близкой к световой. И с такой же скоростью движутся частицы в микромире. Именно скорость света объединяет между собой обе бесконечности: бесконечность большого и бесконечность малого. А мы стоим как бы на перекрестке. Привычный повседневный мир, окружающий нас, не знает таких скоростей. Только разум, мысль позволяет людям познавать невообразимый мир, мерилом которого является скорость света.
Мы оценили масштабы пространства и времени. Осталось вещество, которое окружает нас. Оно, как известно, меняется со временем и перемещается в пространстве. Вещество чрезвычайно многолико, проявления его неисчерпаемы. Но есть у него одно характерное качество — масса, которую мы измеряем в граммах. Попробуем же приближенно оценить всю массу обозримой для нас на сегодня Вселенной. Как уже говорилось, в ней около 1021 звезд. По подсчетам ученых, одна звезда в среднем весит 1035 граммов. Значит, масса Вселенной составляет что-то около 1056 граммов — цифра, еще более грандиозная, чем 1042. И опять обратимся для сравнения к Человеку. Он ведь весит сам менее чем 105 граммов. А мозг его оказался способным осмыслить тяжесть всего мира!
Как далеко до него всем богам всех религий! Человек всемогущ в своем познании окружающей природы, он сумел, сидя на небольшой Земле, очертить границы необъятного мироздания, он черпает мощь даже из сознания своей ограниченности во времени и пространстве, в силах и средствах.
Но для чего все это ему? В чем смысл и причина такого стремления человека к знаниям?
Загадки пространства — времени — материи так волнуют и влекут наши умы отнюдь не сами по себе. Не ради холодного света абстрактных истин мы столь упорно штурмуем тайны мироздания. И не только технический прогресс, дающий материальное изобилие, зовет нас в глубины космоса и микромира. Нет! Главная — и отнюдь не всегда осознанная — причина наших поисков лежит в нас самих. Ведь говоря о границах Вселенной, мы говорим и о возможностях нашего разума — о границах или, вернее, безграничности его познания. Измеряя Вселенную, мы измеряем, по сути дела, и силу нашего мозга. Характер самых смелых, самых «безумных» научных теорий определяется характером нашего мышления. Поэтому-то так волнуют и манят, так тревожат людей тайны космоса и микромира. Они, в сущности, важнейшее мерило наших способностей познавать, а Человек рожден для no-знания, — в этом великий смысл и цель его жизни.
Современные научные гипотезы коренным образом отличаются и от чисто отвлеченного «умствования» древних, и даже от более дисциплинированного, но тоже в сущности «умствования» натурфилософов Нового времени. Сегодняшние научные выводы, как правило, подкрепляются всей мощью реальных, строгих и проверенных знаний. Причем не только квантовая теория или астрофизика, но и космология опираются теперь на четкий эксперимент — достаточно вспомнить в этой связи открытие реликтового излучения Вселенной, когда радиотелескопы «поймали» наконец вполне реальные отголоски того самого «большого взрыва», с которого, как предполагали ученые, и начались величественные процессы рождения атомов и звезд нашего мира… Да, различие с древними мифами тут разительное! И все же если вдуматься, то стройная и величественная современная картина «большой вспышки», несмотря на всю ее математическую строгость, несет в себе весьма похожий на древние легенды аромат романтики, поэзии. Он заключается в невообразимой грандиозности познанного людьми мира, в его поразительной величественности, наконец, в том, что человек сумел все это осмыслить и охватить своим разумом, пусть и не полностью…
Маяки мироздания
Познакомимся с одной важной космологической гипотезой, которая, как кирпичик, входит в современную космологию и тоже опирается на данные непосредственных наблюдений. Ученый Ян Зельхейм исследовал в космосе 11 слабых точечных источников радиоизлучения — квазаров, удаленных от нас на миллиарды световых лет. И для каждого из них он обнаружил пару-антипод в противоположной точке неба. Что это означает?
Согласно современным научным представлениям, в основе которых лежит теория относительности А. Эйнштейна, в замкнутой Вселенной любой луч электромагнитного излучения должен вернуться в исходную точку. Следовательно, в принципе на Землю радиоволны и видимый свет от одного и того же источника излучения могут приходить двумя путями и с противоположных сторон! Если это так, то тогда 11 пар зельхеймовоких радиоисточников — просто 11 максимально удаленных от нас излучателей, испускающих радиоволны двумя путями по эйнштейновской кривизне — навстречу друг другу.
Правда, противостояние таких пар не абсолютно зеркально. Но если учесть невероятную удаленность от нас этих источников радиосигналов и чрезвычайно многочисленные местные искривления пространства, то такие небольшие отклонения легко объяснимы. На возможность фокусировки лучей в сферическом мире указывает и академик В. Л. Гинзбург. Такая фокусировка следствие положительной кривизны пространства. Это наглядно видно на двухмерной модели:
Распространяясь по большим кругам, исходящий от точки А свет соберется на другом «полюсе» — в точке В. Луч в принципе может обогнуть сферу несколько раз. Но из-за местных неоднородностей свет, идущий по разным путям, будет по-разному и отклоняться. В результате для наблюдателя изображение далекого квазара должно как бы «размножиться» — могут появиться так называемые «духи». Поиски этих «духов» — размноженных изображений одного и того же источника — это опытная проверка справедливости теоретической модели сферического мира, созданной современной наукой.
Наблюдая самый дальний квазар, мы как бы оглядываемся на бесконечно далекое прошлое. Ведь свет от такого квазара, видимый на Земле сейчас, начал свое путешествие около 8–10 миллиардов лет назад. Возраст нашей планеты определяется примерно в 5 миллиардов лет. Значит, от этого квазара свет пустился в путь задолго до того, как образовалась Земля. Именно подобные излучения позволяют ученым перекинуть мост через пропасть времени, «заглянуть» в эпоху образования Вселенной. Возраст Вселенной, повторяем, исчисляется в 10–20 миллиардов лет.
Напомним, что существуют две научные теории, пытающиеся объяснить процесс расширения Вселенной. Первая постулирует во времени некий определенный момент — «большой взрыв», «большую вспышку», положившую начало Вселенной. Эта теория так и называется «взрывной»; иногда ее именуют «эволюционной».
Другие представления исходят из того, что Вселенная по мере расширения постоянно образовывала новую материю из энергии пространства. Эта материя заполняет новыми галактиками все увеличивающиеся бездны между галактиками существующими, и таким образом Вселенная остается относительно однородной, неизменной — без начала и без конца. Такая концепция известна под названием «стационарной». Позднее в нее внесли некоторые поправки — и возникла идея пульсирующей Вселенной, которая периодически то расширяется от взрывов некоего изначального тела, то сжимается вновь, а затем опять взрывается по огромным циклам. И так до бесконечности…
Несмотря на ожесточенные споры, ученые не могли доказать явного преимущества той или другой теории. Для проверки обеих гипотез важно было, в частности, подсчитать количество галактик, расположенных по периметру Вселенной. Если бы такой подсчет показал, что там сконцентрировано больше галактик, чем в центральной части, то это подтвердило бы верность взрывной теории, утверждающей: вначале галактики находились на более близком расстоянии друг от друга. Ну а если подсчет показал бы, что галактики распределены по всей Вселенной сравнительно равномерно, то у ученых появились бы серьезные основания полагать: права теория стационарная, доказывающая, что Вселенная неизменна и ныне, и в прошлом, и в бесконечном будущем.
В 1961 г. сотрудник Кембриджского университета Мартин Райл завершил свой восьмилетний подсчет радиоисточников и подтвердил известное скопление небесных объектов у внешних краев Вселенной. Подсчитывать радиоисточники довольно трудно и столь же сложно дать им правильную интерпретацию…
Вот почему квазары стали для исследователей своеобразными маяками, постоянно фиксируемыми и достаточно удаленными ориентирами для широкого изучения относительной скорости расширения Вселенной. Сопоставляя красные смещения галактик и квазаров на все более отдаленных точках космоса, ученые получили возможность определить, ускоряется или замедляется темп расширения Вселенной. Согласно стационарной теории, этот темп должен увеличиваться с течением времени и по мере вечного движения галактик дальше от центра в расширяющейся Вселенной. Согласно взрывной теории, темп расширения должен уменьшаться, так как галактики теряют свою энергию под влиянием всемирного тяготения и отдаляются друг от друга все более медленно, чем непосредственно после взрыва. Если темп замедления достаточно резок, то, значит, в конце концов наступит момент, когда снова начнется фаза сжатия галактик.
А если Вселенная действительно начнет сжиматься, то, по некоторым расчетам, это будет все ускоряющийся во времени процесс. Галактики станут «сбегаться» быстрее и быстрее, пока не «сольются» в сравнительно небольшой шар с исключительной плотностью вещества, который в конце концов снова взорвется, и, как в популярной песне, «все опять повторится сначала»…
Современная космология утверждает, что для расширяющейся Вселенной существует «горизонт события», за которым находится ненаблюдаемый антимир. Поэтому можно сказать, что переход всей Вселенной от расширения к сжатию подобен падению ее в зазеркалье антимира. Наблюдая с Земли сжатие Вселенной, мы увидели бы как бы «провалы» галактик за «горизонт событий», в мир встречного времени.
Впрочем, проблемы «сжимающегося» мира имеют для нас скорее теоретический интерес. Наука сегодня кладет свою основную лепту на чашу весов «взрывной», «нестационарной» теории. Поэтому-то наряду с «переписью» галактик ученые и пытаются провести подсчет квазаров. В «стационарной» Вселенной квазары должны распределяться в постоянной пропорции в любой исторический отрезок времени. Подсчитав число этих сверхзвезд с небольшим красным смещением — они ближе к нам и, следовательно, представляют сравнительно недавние эпохи в жизни Вселенной — и сопоставив его с числом объектов, чье большое красное смещение указывает на удаленность от нас во времени и пространстве, можно проверить справедливость обеих теорий.
По последним данным, квазаров с большим красным смещением оказалось гораздо больше. Это свидетельство того, что Вселенная эволюционирует во времени, а не находится в стационарном состоянии. Сейчас получены спектры более сотни квазаров. Максимальное обнаруженное расстояние тут составляет около 8 миллиардов световых лет. Такой результат говорит о том, что ученым удалось заглянуть в то время, когда нашей Вселенной было «всего» 2 миллиарда лет! А это означает, что мы теперь непосредственно обозреваем уже о; коло 80 процентов необъятного мира!
Как видим, исследование квазаров стремительно раздвигает границы космологии.
Обнаружение в 1965 г. реликтового (остаточного) излучения, испущенного в начальные моменты развития Вселенной, указывает на то, что когда-то была так называемая догалактическая фаза ее развития — тогда не было ни галактик, ни квазаров. Вот почему квазары все же дают нам о Вселенной весьма ограниченные сведения. Очевидно, с их помощью ученые не сумеют заглянуть глубже чем на 8 миллиардов лет назад.
А как же все-таки тогда узнать о догалактической юности Вселенной? И есть ли вообще у человека сегодня такая возможность?
Антимир родился в тот же день и в тот же час
Гипотеза сверхплотной «бомбы», из которой, как цыпленок из яйца, вылупилась наша Вселенная, остается равнодушной к великой симметрии мира. Но антивещество властно требует всех прав гражданства. Вполне допустимо предположить, что вещество и антивещество — близнецы, родившиеся в одном и том же месте и в одно и то же время. Естественно допустить также, что оба состояния материи развились в какой-то момент эволюции сверхплотного протовещества. Первая космологическая теория, которая справедливо поступила с антивеществом, была разработана американским физиком Гольдхабером. Он назвал первоначальное средоточие Вселенной «универсоном». При распаде эта исходная суперчастица разделилась на две: «космон» и «антикосмон». Как нетрудно понять из названий, «космон» дал начало веществу, «антикосмон» антивеществу. Пока все это не более чем фантастика, в лучшем случае феноменологическая «протогипотеза», которую еще только предстоит развить. Гольдхабер не называет причин внезапного распада «универсо-на». Он лишь проводит здесь параллель с распадом тета-нулымезона на положительный и отрицательный пионы. Подобно этим частицам, «космон» и «антикосмон» разлетелись в разные стороны, стремясь скорее покинуть место распада. Последовавший за этим взрыв «космона» дал жизнь окружающему нас миру. Что же касается «антикосмона», то он мог не взорваться и по сей день. Впрочем, он мог и взорваться одновременно с «космоном», но в этом случае Антивселенная находится вне пределов нашей видимости.
Гипотеза Гольдхабера — это как бы предшествующая ступень гипотезы образования Вселенной из протовещества. Кроме того, она вносит в эту последнюю гипотезу недостающий элемент симметрии. В остальном же на нее распространяются все присущие таким гипотезам недостатки. Мы не знаем и никогда не узнаем, откуда появился «универсон» и почему он вдруг претерпел распад на две противоположные частицы. Но точно так же нам приходится принимать как данное и сверхплотное протовещество, сжатое до ничтожных размеров! И с этим приходится мириться. Как говорят физики, проблема рождения Вселенной относится к числу «неприятных».
Если мы принимаем «взрыв» за начало развития Вселенной, то нужно смириться и с тем, что именно с этого момента начался и отсчет времени. «До» этого будильник стоял, точнее, его просто не существовало! Итак, окончательно договоримся, что все вопросы, касающиеся того, что было «до», просто не имеют смысла. Это позволит нам иными глазами смотреть и на «неприятные» проблемы. Все отличие этих проблем от гипотез натурфилософов в том, что «неприятные» проблемы опираются на всю мощь экспериментальных и теоретических наук, тогда как главной опорой натурфилософов была чистая фантазия. Разница очень существенная.
Поэтому не будем спрашивать, что было до начала Вселенной. Блаженный Августин, говорят, заинтересовался тем, что делал бог до того, как создал мир. На этот вопрос могло быть два одинаково неприятных ответа: 1) бога до того, как он создал мир, просто не было и 2) бог был занят тем, что создавал ад для людей, задающих глупые вопросы.
Но если Гольдхабер в своей гипотезе исходит из изначального существования сверхплотной «бомбы» — а такая посылка, как мы видели, диктуется наблюдаемым расширением Вселенной, — то шведские астрофизики Альф-вен и Клейн пытаются вывести Метагалактику из облака крайне разреженного вещества. Вряд ли такая попытка достаточно серьезна. Но в гипотезе шведских ученых есть несколько остроумных моментов, из-за которых с ней стоит познакомиться. Ведь диалектика развития научных идей подсказывает, что наиболее правильное решение рождается на стыке двух противоположных мнений. Закроем глаза на, мягко говоря, не очень ясную отправную точку в гипотезе Альфвена и Клейна, согласно которой облако появилось в результате небольшого изменения энергетического состояния пространства. Знакомство с природой физического вакуума дает возможность «переварить» и не такие идеи.
Итак, мы приходим к какой-то (чем она хуже внезапного взрыва?) энергетической флюктуации. Чистая энергия обязана превратиться в эквивалентное число пар, состоящих из частицы и античастицы. По сути дела, облако Альфвена — Клейна не что иное, как плазма. В первые моменты существования эта плазма настолько разрежена, что столкновения частиц очень редки и аннигиляция между частицами и античастицами почти невозможна. Но постепенно, под действием гравитационных сил, плазма начинает сжиматься. Аннигиляционные вспышки происходят все чаще и чаще, а конечные продукты аннигиляции — фотоны — все более плотным потоком пронизывают пространство. Короче говоря, повышается радиационное давление, которое и приводит в конце концов к равновесию сжимающих и расталкивающих сил. В этих условиях происходит формирование атомов, облаков газа, которые постепенно конденсируются в различные небесные тела.
Самое любопытное в гипотезе шведов — это идея отделения вещества от антивещества. С ней стоит познакомиться поближе: она может в какой-то мере дополнить другие, более удачные космологические теории. Наконец, она обладает и самостоятельной ценностью.
Еще в период сжатия первичной плазмы, процесса, вероятно, весьма неравномерного, возможно появление различных местных сгущений. Температура в таких сгущениях вследствие повышенной плотности аннигиляции, естественно, выше, чем в окружающем газе. Это, в свою очередь, приводит к конвекции. Под действием гравитационных сил более легкий электронно-позитронный газ начинает скопляться в одном участке, который мы условно можем назвать «верхним». Более тяжелый газ, обогащенный нуклонами и антинуклонами, оказывается тогда в «нижних» областях. Движение заряженных частиц в плазме вызывает появление электромагнитных сил, которые «рассортировывают» частицы с разноименными электрическими зарядами.
Не касаясь подробностей механизма электромагнитной сепарации частиц из «верхней» и «нижней» областей, удовольствуемся лишь конечным результатом. А он нам известен заранее, поскольку в нашем мире частицы преобладают над античастицами. В итоге нам ведь нужно соединить позитроны с антипротонами и электроны с протонами и отделить вещество от антивещества. Альфвен, собственно, и предлагает такую гипотетическую схему магнитных полей в сжимаемом облаке, при которой индуцируются необходимые для сепарации электрические токи. Конечно, приведенная им схема произвольна, но она вероятна. А можно ли требовать большего от гипотезы, касающейся одного из самых «неприятных» вопросов?
Приняв со всеми возможными допущениями и оговорками, что эволюция первоначальной плазмы привела в конце концов к образованию облаков водорода и антиводорода, мы сразу же сталкиваемся с новой трудностью. Суть ее предельно ясна. Как объяснить, что не произошла аннигиляция этих облаков?
Подобно тому как из кольцевых магнитных линий можно создать замкнутую «трубку», в которой, как в бутылке воду, можно хранить плазму, в будущем, вероятно, удастся создать и «бутылку» для хранения античастиц. Сквозь невидимые магнитные стенки ни изнутри, ни снаружи не сможет прорваться ни одна заряженная частица. В таком «сосуде» можно будет безбоязненно хранить запасы античастиц, не опасаясь аннигиляции. Одним словом, человек научится экранировать вещество от антивещества. Но у нас-то речь идет о процессах, которые гипотетически должны были протекать за миллиарды лет до появления человека!
Альфвен предсказал вариант самопроизвольной взаимной экранировки облаков водорода и антиводорода. На границе соприкосновения таких облаков неизбежно возникает аннигиляция. Но бояться ее не нужно. Аннигилируя, атомы и антиатомы породят вихри фотонов и электронно-позитронных пар. Этот радиационный газ, подобно пару, подбрасывающему каплю воды на раскаленной плите, будет стремиться отбросить облака антиподов в разные стороны. Чем сильнее будет протекать аннигиляция, тем энергичнее будут силы расталкивания. Поэтому облака, едва успев войти в соприкосновение, разойдутся, как корабли, подгоняемые ветрами, дующими с разных сторон.
Таких облаков-антиподов в первоначальной плазме рождается великое множество. Мы нарочно взяли лишь одну пару, чтобы легче было разобраться в происходящих процессах. Далее начинается самое интересное. Магнитные поля в первичной плазме крайне слабы. При самом оптимистическом подсчете, они лежат в пределах 1–2 гаусс. Но чем слабее магнитное поле, тем слабее и ток в природном контуре плазменного сгустка. А это, в свою очередь, означает, что в космической сепарации участвует меньше частиц. По расчетам Альфвена и Клейна, магнитные поля средней силы способны разделить вещество и антивещество, общая масса которых соизмерима с массой звезды. Парадоксальный вывод!
Он означает, что даже наша вполне заурядная система могла возникнуть не из одного водородного облака, а только в процессе слипания нескольких таких облаков. Отсюда легко прийти к выводу, что даже в нашей Галактике половина звездных систем может состоять из антивещества! Астрономам придется много потрудиться, чтобы опровергнуть этот ошеломляющий вывод. Звездный свет не несет нам информации о веществе, которое его испускает. И может быть, даже ближайшие наши соседки Альфа Центавра и Тау Кита черпают свою энергию из синтеза антипротонов.
И все же, несмотря на то что электромагнитное излучение одинаково для вещества и антивещества, у нас есть определенные шансы распознать окружающие Солнечную систему антимиры. Конечно, если эти антимиры действительно существуют. Оставляя в стороне нейтринную астрономию, которая является делом будущего, коснемся так называемых фронтов. Мы употребили это название по аналогии с одноименным атмосферным явлением, наблюдающимся при столкновении холодных и теплых воздушных масс. Атмосферный фронт легко обнаружить по характерным шумам: воды, крикам птиц и животных. Аналогично этому можно попытаться обнаружить аннигиляционный фронт в космосе.
Поскольку на границе вещества и антивещества кипят аннигиляционные битвы, то, как говорят астрономы, в «гамма-свете» соответствующие участки ночного неба не могут не выдать себя. Конечно, атмосфера задерживает рентгеновские излучения космоса. Но гамма-телескопы уже выводились с помощью спутников на околоземную орбиту. Первые такого рода опыты, правда, показали, что космический гамма-фон довольно однороден. Но окончательные выводы на основании этого делать нельзя. Потребуются еще десятки и сотни точных измерений. Да и гамма-телескопы еще не настолько совершенны, чтобы мы окончательно отказались от идеи существования «ближних» антимиров.
Впрочем, «роме гамма-астрономии есть еще одна возможность подтвердить или опровергнуть гипотезу шведских астрофизиков. Речь идет об особенностях аннигиляционных фронтов, на которые обратил внимание советский ученый Н. А. Власов. На короткое мгновение перед аннигиляцией частицы и античастицы образуют псевдоатомные структуры — протоний (протонно-антипротонная пара) и позитроний (электронно-позитронная пара). Протоний и позитроний обладают избыточной энергией. Поэтому, прежде чем исчезнуть, они успевают испустить световые кванты. Вполне понятно, что квазиатомные структуры обладают строго определенными спектрами. На основании этого Н. А. Власов и предлагает изучить спектры всех даже самых слабых свечений в пространстве.
Прорыв к «началу»
Попробуем совершить мысленное путешествие к тем далеким временам, когда привычное для нас понятие «наблюдатель» теряет всякий смысл, когда не было ни галактик, ни звезд, ни планет, ни разума…
Ставя наш мысленный эксперимент, изберем для первого «посещения» прошлого Вселенной период, отделенный от «большого взрыва» двумя-тремя годами.
В этот период вещество Вселенной напоминало плазму. Оно представляло собой расширяющееся облако протонов, электронов и легких ядер (главным образом гелия), пронизанное гигантскими электромагнитными потоками всех степеней жесткости — от радиоволн до гамма-лучей. Излучение это, конечно, обладало равновесной с веществом температурой. Но температура по мере расширения быстро уменьшалась. «Выстрел» свершился — и горячие газы вырвались на простор… Поэтому через несколько тысяч лет после «взрыва» температура достигла вполне привычных для нас значений: 3000–4000°К[12], а плотность вещества упала примерно до 10–20 г/см3. В этих условиях электроны уже могли соединяться с ядрами и образовывать первые в юной Вселенной легкие атомы — водородные, гелиевые и т. п. В такой среде излучение как бы «отрывается» от вещества, перестает испускаться и поглощаться. Температура этого излучения тоже быстро уменьшается.
Как известно, температура меняется обратно пропорционально расстоянию между любыми удаленными частицами расширяющегося объема, а плотность обратно пропорционально кубу этого расстояния. Вспомним, что плотность вещества в современной Вселенной достигает значения 10–29 г/см3. Поделив величину плотности вещества юной Вселенной — 10–20 на сегодняшнюю плотность — 10–29, мы получим величину 109. Это соответствует изменению расстояния в 103, или, говоря иными словами, радиус современной Вселенной в 1000 раз больше, чем той прежней, о которой идет речь. А это означает, что температура «оторвавшегося» излучения должна теперь быть в 1000 раз меньше, то есть соответствовать приблизительно 3°К.
Мысль о том, что такое излучение — «свидетель» первоначального «взрыва» — можно обнаружить в космосе, была высказана еще более 20 лет назад, но, как это часто бывает, ей не придали большого значения: идея была «чуточку» преждевременной. Зато поеле 1965 г., когда реликтовое излучение было открыто, все смогли оценить, насколько она была справедлива. Остается добавить, что температура этого излучения оказалась 2,7°К! Это был еще один триумф современной научной теории. Выяснилось, что разработайные советским ученым А. А. Фридманом в начале 20-х годов модели Вселенной не только качественно, но и количественно вполне реально описывали эволюцию мира. Столь же справедливой оказалась и гипотеза о «горячей» Вселенной.
Наиболее примечательное свойство реликтового излучения — его удивительная однородность, как говорят ученые, изотропность: со всех точек неба оно поступает к нам с одинаковой интенсивностью. И это тоже помогает ученым: ведь исследуя современный реликтовый фон и высчитывая, каким он был на более ранней стадии, можно заглянуть в прошлое Вселенной. Поэтому с полным на то основанием сегодня можно сказать, что в период «отрыва» излучения от вещества Вселенная была более или менее изотропной. Это очень важный вывод, хотя он и не дает нам права судить о более ранних стадиях, когда первичное облако не было «прозрачно» для излучений.
В первые секунды — а может быть, даже дни и годы после «взрыва» Вселенная могла быть сильно анизотропной, то есть обладать любыми неоднородностями. Но постепенно они сгладились, как складки на камере мяча после его накачки. При этом следует учесть также, что на пути к нам кванты реликтового излучения многократно рассеивались и «забывали» о своем далеком прошлом. Вот почему о более ранних стадиях жизни Вселенной мы можем только высказывать гипотезы. Однако не исключено, что об этих периодах нам когда-нибудь смогут рассказать реликтовые нейтрино и гравитационные волны, если ученые когда-нибудь сумеют их поймать.
И все же современная наука сумела совершить громадный прыжок в прошлое нашего мира! Если квазары позволили им приблизиться к моменту «большого взрыва» лишь на 2 миллиарда лет, то реликтовые кванты сократили этот срок до 300 тысяч лет. По сравнению с гигантским временем существования Вселенной это очень мало.
Однако попробуем все же подойти еще ближе к «началу». Согласно «горячей» модели Вселенной Фридмана, через 100 секунд после «взрыва» плотность вещества должна составлять около 100 г/см3, а температура — 109 градусов. Подсчеты говорят, что на этой стадии вещество состояло в основном из протонов, нейтронов и электронов. При этом протоны активно взаимодействовали с нейтронами, образуя главным образом альфа-частицы. Те же немногие нейтроны, которые не успели вступить во взаимодействие, распадались. Таким образом, сразу же после «взрыва» Вселенная состояла на 90 процентов из протонов и на 7–8 процентов — из ядер гелия. Отсюда понятно, что, определив процент гелия в сегодняшней Вселенной, можно было бы существенно подкрепить «горячую» фридмановскую модель. И действительно, у исследователей теперь есть немало оснований утверждать, что гелия во Вселенной много — около 5–10 процентов.
Но и на этом современная теоретическая наука не останавливается. Она стремится проникнуть в еще более ранние стадии существования мира. В тот момент, когда время (Т) было равно всего 0,3 секунды, плотность вещества должна была достигать 107 г/см3, а температура — 3·1010 градусов. Этот период характеризуется «отрывом» нейтрино от нуклонов. В принципе здесь имело место то же явление, о котором уже шла речь, когда мы говорили о реликтовом излучении. Как и электромагнитное излучение, нейтрино не успевали излучиться и поглощались веществом. Но с уменьшением плотности вещество стало для нейтрино прозрачным. Разница здесь лишь в критических значениях плотности: 10–20 г/см3 — для электромагнитных квантов и 10–7 для нейтрино.
Считается, что излученные в тот период нейтрино должны были «дожить» до наших дней. Но теперь они уже настолько охладились (температура их с 3·1010 упала до 2°К), что ученым вряд ли удастся их «поймать» в ближайшее время. Для этого точность существующей у нас аппаратуры нужно увеличить на несколько порядков. Но в принципе поймать реликтовый нейтринный фон можно. И это приблизило бы нас почти к самому моменту «начала». Впрочем, температуру в 2°К дает уже знакомая нам модель с изотропным расширением. Если же ранние стадии были анизотропны, то реликтовые нейтрино должны обладать температурой более высокой, и «уловить» их, конечно, будет легче. Возможно, это и произойдет в ближайшие годы…
Но продолжим наше путешествие во времени, наш «прорыв» к Т-0[13], ко все более высоким плотностям и температурам. Здесь нас ожидают некоторые сюрпризы.
При Т=10-4 секунды плотность вещества уже «ядерная» — 1014 г/см3. Это означает, что Вселенная в тот момент еще находилась под властью квантовых законов. С достаточной строгостью мы можем считать такую раннюю Вселенную… громадным атомным ядром со всеми вытекающими из этого последствиями. Поистине удивительное торжество диалектики с ее законами перехода количества в качество! Поскольку общая теория относительности не учитывает квантовость, то вряд ли с ее помощью можно описать эту раннюю стадию.
А при еще более высоких плотностях квантовые законы играли, видимо, большую роль. Мы даже представить себе не можем, сколь необычны были проявления многоликой пространственно-временной сущности в тех условиях! Может быть, все наши современные физические понятия просто не имели тогда никакого смысла. Так что нельзя даже говорить о чудовищной «гравитационной» плотности, которую, возможно, имела Вселенная в самый момент Т-0. Теория пока дает нам умопомрачительную цифру: 4·1093 г/см3 — и ничего к ней не добавляет. Помочь тут не могут ни наши сегодняшние знания, ни здравый смысл…
Но разве Человек сделал уже свои самые последние шаги в глубины космоса и микромира?..
Нет! Он стоит ныне на перекрестке дорог, исчезающих в ночи. Пусть он мысленно «обрубил» бесконечности и знает, что в принципе эти дороги где-то кончаются. Но где? И сумеет ли он хоть когда-нибудь дойти туда? Попытаемся же приблизительно оценить количество максимально возможной информации во Вселенной и сравнить его с информационной мощностью человеческого мозга.
Согласно принципу Бреммермана, никакая система не может обработать информации больше чем 1,6×1047 бит/грамм-секунду. Для простоты предположим, что никакая система не может и выдать большей информации. Тогда, помножив это число Бреммермана на массу и возраст Вселенной, получим и ее информационную емкость: 1,6·1047 бит/грамм-секунду ×1058 грамм ×1018 секунд=10123 бит. Человеческий мозг в течение жизни способен переработать лишь 1014 бит, или 105 бит/секунду. Вывод из этих расчетов напрашивается недвусмысленный — Вселенная для человеческого разума неисчерпаема.
Великое единоборство смертного и слабого «мыслящего тростника» с вечной и неисчерпаемой природой — вот извечная задача ученого. Однако даже это реальное соотношение с бесконечным миром все же нисколько не может принизить Человека, как это пытается делать религия, постулируя его слабость и ничтожность перед богом и якобы сотворенным им миром. Ведь любой мифический бог и «божий мир», созданные человеческим воображением многие века тому назад — на ранних этапах познания, выглядят весьма примитивно по сравнению с тем, что сегодня Человек знает и делает, по сравнению с необъятным окружающим его реальным миром. Пусть необозримы бездны времени и пространства, все же люди исследуют и познают их. Именно своей дерзкой способностью осмыслить бесконечность, разумом и взглядом объять необозримое — вот чем силен и славен Человек…
В. Л. Гинзбург, академик, лауреат Ленинской премииНовая картина мира
В начале 1973 г. широко отмечалось 500-летие со дня рождения знаменитого польского астронома Николая Коперника, опрокинувшего привычную для той эпохи картину мира. Коперниковское учение противоречило религиозному мировоззрению, согласно которому в центре Вселенной находится Земля, а Солнце, Луна и звезды вращаются вокруг Земли.
Несколько десятилетий шли споры вокруг «безумной» гипотезы Коперника. Но вот в начале XVII в. произошла величайшая революция в наблюдательных средствах астрономии: был изобретен или, точнее, начал применяться Галилеем телескоп. Наблюдения неба, сделанные с помощью телескопа, быстро подтвердили правоту Коперника (достаточно упомянуть об открытии спутников Юпитера, вращающихся вокруг этой планеты). Идея гелиоцентризма победила, а накопление данных о небесных светилах стало происходить нарастающими темпами.
До начала XX в. теоретической базой для объяснения физических явлений, происходящих во всех частях Вселенной, служила механика Ньютона с ее важнейшими принципами: независимостью пространства и времени от «наполняющего» Вселенную вещества и возможностью изучать движение небесных тел, используя в качестве привилегированной системы отсчета неподвижный мировой эфир, наполняющий все мировое пространство.
Примерно 60 лет назад выяснилось, однако, что принципы ньютонианской физики должны быть заменены при описании картины мира принципами специальной и общей теории относительности: никакой абсолютной (привилегированной) системы отсчета не существует, пространство и время понятия в известном смысле относительные, гравитация тесно связана со свойствами пространства, модель Вселенной, построенная на основе новых теоретических принципов физики, глубоко отличается от Вселенной Коперника, Галилея, Кеплера и Ньютона, не говоря уже о наивных представлениях седой древности, аккумулированных в библейских легендах.
Ко всему этому в 50-х и 60-х годах нашего века произошла вторая революция в развитии наблюдательной астрономии. Радиотелескопы, рентгеновские телескопы, зарождающиеся методы нейтринной астрономии, разработка аппаратуры для обнаружения гравитационных волн, экспериментальная проверка выводов из теории относительности, обнаружение целого ряда необычных астрономических объектов и явлений (квазаров, пульсаров, реликтового излучения) — все это поставило перед современными астрофизиками задачи, имеющие огромное мировоззренческое значение. Надо было объяснить вновь обнаруженные явления и то, что было известно астрономам раньше, с позиций единой физической теории и построить такую модель Вселенной, которая и соответствовала бы тому, что мы наблюдаем сейчас в окружающем нас пространстве, и отражала бы длительную эволюцию планет, звезд, галактик, всей Метагалактики.
Уже исходя из общих соображений, можно было заключить, что такая модель окажется несовместимой со многими привычными представлениями о строении мира и о «природе вещей», поскольку они, эти привычные представления, соответствуют законам механики Ньютона. Новая же модель должна учитывать эффекты теории относительности, которые становятся ощутимыми при скоростях, близких к скорости света, и при плотностях вещества, превышающих в миллиарды раз плотность воды.
В начале 20-х годов советский физик А. А. Фридман показал путем теоретических расчетов, что статическая релятивистская модель строения Вселенной, предложенная А. Эйнштейном в 1917 г., является лишь одной из огромного числа возможных моделей, и вполне вероятно, что наша Вселенная непрерывно расширяется. Через несколько лет расширение Вселенной было доказано: об этом свидетельствует так называемое красное смещение спектральных линий в спектрах далеких от нас галактик. Картина такова: галактики как бы разбегаются в пространстве, возникнув 10–20 миллиардов лет назад из сгустка вещества колоссальной плотности.
Состояние вещества и ход физических процессов, сами понятия о времени и пространстве в «ранний» период эволюции Вселенной, когда плотность была грандиозна, еще недостаточно ясны и, вероятно, существенно отличаются от понятий физики сегодняшнего дня. Здесь нас ждет много нового, быть может, совсем необычного.
Но качественные изменения во Вселенной происходили не только в далеком прошлом. Имеются теоретические предположения, что при определенных условиях эволюция звезд приводит к образованию так называемых «черных дыр». Поле тяжести у поверхности этих дыр так велико, что силы гравитации «сковывают» в этой части пространства все виды лучистой энергии, в том числе и свет. Поэтому эти массивные звезды становятся невидимыми, если только на них не падает вещество извне. Выяснение того, как при этом все же обнаружить «черные дыры», является одной из интереснейших задач современной астрофизики.
Было бы легкомысленным пытаться в краткой беседе изложить хотя бы в самой общей форме основные достижения современной астрофизики или хотя бы дать сколько-нибудь полное представление об ее содержании[14]. Хочу лишь отметить, что современная астрофизика ставит перед нами грандиозные по трудности задачи построения общей картины мира, соответствующей новым теоретическим представлениям и новым данным наблюдательной астрономии.
Значит ли все сказанное, что борьба за истину, шедшая на протяжении веков, в свете современных знаний теряет свое значение? Значит ли это также, что современная картина динамически развивающейся Вселенной делает бессмысленными старые споры о строении Солнечной системы?
Ни в коем случае. Современная научная картина мира включает в себя как часть, элемент, как относительную истину и гелиоцентризм Коперника, и механику Ньютона. Ведь дело в том, что каких бы достижений ни добилась наука, какой бы вид ни приняла вследствие этого картина мира, она всегда будет противостоять любой догме, пытающейся дать абсолютный (и потому неверный, мертвый, иллюзорный) ответ на вопрос, «как» устроен тот универсум, в котором живет и мыслит человек[15].
Лишь активное познание, свободное от наперед заданных установок и подкрепляющее каждый свой шаг наблюдением и экспериментом, имеет право на существование. И чем дальше мы уходим по бесконечному пути постижения законов природы, тем слабее позиции ложного, метафизического, догматического способа описания природы.
Г. А. Чеботарев, доктор физико-математических наукОптимизм нашего знания
Вспоминаю, с какой тревогой рассматривали мои коллеги новейшие фотографии Марса: следы небесной бомбардировки различались на его поверхности так явственно, что он больше напоминал Луну, чем землеподобную планету. И каждый невольно думал: а хорошо, что наша Земля находится далеко от пояса астероидов, где часто падают метеориты.
Небесная механика, которой занимается Институт теоретической астрономии, не так уж богата драматическими событиями. Мы изучаем в основном движение малых небесных тел — астероидов и комет. И хотя они находятся к нам много ближе звезд, но все же держатся обычно на почтительном расстоянии от Земли. Правда, «небесные камни» не раз обрушивались на нашу планету и в различных ее местах оставляли «шрамы», которые заметны до сих пор. В Африке, например, это кольцо Вудворта диаметром 50 километров — след от падения метеорита. Есть предположение, что гигантская, 440-километровая, дуга Гудзонова залива тоже часть метеоритного кратера.
Но изучение малых небесных тел показывает, что их падение не может представлять серьезной опасности для планет. Луна существует миллиарды лет, хотя от небесной бомбардировки ее ничто не защищает (для Земли роль панциря играет атмосфера); крохотный спутник Марса — Фобос, сфотографированный недавно с космического корабля, весь изрыт оспинами от ударов метеоритов, и все же он существует. Конечно, если крупный «небесный камень» упадет на один из городов Земли, то будет беда. Однако такое событие весьма маловероятно.
Может создаться впечатление, что за таким оптимизмом астрономов скрывается фатализм: мол, зачем пугать людей, если грозящую с неба опасность предотвратить все равно невозможно. Но это не так. Нас интересует только истина, только правда, как бы ни была она горька.
Многих интересует, например, что случится, если в результате нестационарных процессов на Солнце его излучение усилится и средняя температура на нашей планете повысится хотя бы на 3–4 градуса? Ведь ясно, что тут дело не ограничится отказом людей от теплой одежды. Такое повышение температуры скажется, вероятно, и на глубинных процессах в биосфере, последствия чего довольно трудно предвидеть.
Бывает, что возникают еще более пугающие вопросы, например: что будет, если недалеко от Солнца вспыхнет сверхновая звезда и в связи с этим на Земле резко возрастет фон радиации? Как отразится это на эволюции жизни?
Такие проблемы обсуждаются ведь не только в научных кругах, но и на страницах печати, они становятся достоянием всех. Нередко их пытаются использовать ревнители религии, пугающие верующих скорым концом света.
Астрономов такие вопросы волнуют не меньше других. Не следует думать, что человеческие тревоги, в том числе и связанные с процессами во Вселенной, им чужды. Но, становясь к телескопу или садясь за расчеты, ученый должен, обязан позабыть на время о том, что его волнует, о своих личных чувствах по этому поводу и заняться кропотливой добычей и объективной интерпретацией реальных фактов. Другого пути к настоящей истине нет.
Именно такой подход неопровержимо говорит нам: вопросы эти достаточно абстрактны. У человечества есть все основания для долгой и счастливой жизни на нашей планете и в Солнечной системе.
Мне вспоминается шумиха, поднятая в свое время вокруг астероида Икар. Кто-то из западных журналистов опубликовал интервью с ученым, из которого следовало, что в 1968 г. эта малая планета может врезаться в Землю. Приводилось даже «научное» обоснование: мол, орбита Икара, простирающаяся от Меркурия до пространства за Марсом, может быть изменена притяжением Меркурия. И сразу же западные газеты начали расписывать все возможные и предполагаемые последствия падения Икара, словно возможность столкновения его с Землей уже была доказана. Говорили даже о том, что СССР и США якобы готовят высадку на этот астероид, чтобы изменить его орбиту. В Мировой центр малых планет, то есть к нам, в Ленинград, в Институт теоретической астрономии, пришел по этому поводу специальный запрос. В ответ на него мы сообщили результаты своих расчетов и вывод, что Икар пролетит вдали от Земли. Так оно и случилось.
Это, конечно, замечательно, когда сбываются оптимистические научные прогнозы. Однако Вселенная разнообразней не только того, что люди себе представляют, но и того, что они вообще могут вообразить. И вот астроном у телескопа встречается с ней как бы один на один. Перед ним — безграничные просторы, его окружает бесконечный океан времени. Не появляется ли при этом у земного наблюдателя, астронома мысль о бессилии науки познать Вселенную?
Мне думается, что самая большая радость для человека — процесс узнавания нового, раскрытия сокровенных тайн природы. Знания, добытые предшествующими поколениями ученых, можно сравнить с горой. Как только молодой человек в процессе учебы взобрался на ее вершину, перед ним раскрываются чарующие горизонты. При всей относительности знаний — а она существует всегда — он видит мир как бы целиком. Перед ним картина, в которой есть и неясные детали, и очень много еще недорисованных мест.
Какие чувства и стремления пробуждает такой вид в молодом ученом? Прежде всего удивление, очарование красотой природы, желание работать, открывать неведомое, служить истине, ибо только на этом пути были сделаны самые большие открытия.
Я вообще не представляю себе, что знание может породить пессимизм, напротив, оно должно являться и является источником оптимизма. Астроном, возможно, лучше других понимает всю сложность и безграничность Вселенной. Но сознание того, что он, так мало живущий человек с ординарной планеты, вмещает в своем мозгу всю эту сложность и безграничность, не может не быть источником гордости за науку, за человечество.
Да, человек смертен! Но посмотрите, какие разные выводы делают из этого очевидного факта материалисты и защитники религии. Первые говорят: трудись, проживи свою жизнь так, чтобы продвинуть вперед человечество на его нелегком пути к знанию и счастью. Вторые же считают земное существование лишь подготовкой к вечной жизни в загробном царстве.
Может ли изучение космоса натолкнуть на невеселые мысли? Да, разумеется… Мы ведь еще очень многого не знаем, а неизвестное всегда тревожит. Так, нам известно, что умирают миры, планеты, звезды, а значит, решаем мы, и человечество тоже не вечно: было у него начало, будет и конец. К такому выводу, конечно, можно прийти в эпоху, когда у нас нет контактов с другими цивилизациями и нам неизвестны иные модели существования разумной жизни. Это, разумеется, невесело. Однако весь ход истории, вся эволюция познания говорит нам; выход всегда находится, нередко очень неожиданный. Так что одно дело — грустные мысли и совсем другое —.пессимизм; астрономия не дает для него никакого повода. Факты науки и ее развитие, осмысленное в свете диалектического материализма, учат нас оптимизму.
Ученый по самой своей природе — рыцарь истины. О великих деятелях науки можно сказать то же, что А. С. Пушкин сказал о музыкантах: «Гений и злодейство две вещи несовместные». Тогда почему же, могут нас спросить, наука нередко употребляется во вред людям?
Что ж, объективные данные науки — это одно, а применение, которое находит им тот или иной правящий класс, — совсем другое. В нашей стране наука служит социалистическому обществу и его гуманным целям. Отсюда и гуманизм советской науки. Совсем другое у нее положение в эксплуататорском обществе.
Конечно же в самой науке содержатся предпосылки к тому, чтобы ученый был человеком высоконравственным. Но нравственность — явление общественное, вот почему и важно, в каком обществе трудится ученый, заказы какого класса он выполняет. Нет ученого и науки вне времени и вне общества. Большую роль тут играет и сама личность ученого — его воспитание, психология, социальное положение, личная судьба и т. д. Однако при всем этом настоящая наука остается наукой, то есть объективным процессом познания мира и его закономерностей, существующих независимо от нас. И такая наука не дает никаких оснований для пессимизма.
Иногда поражаются: как же так — крупный ученый и верит в бога? Я хотел бы заметить, что среди астрономов глубоко верую-щих я не встречал. Для многих таких ученых вера — результат воспитания, дань традиции. Но самое главное: бога они, как говорится, принимают с черного хода и в свою науку не пускают, ибо там, где начинается религия, там кончается естествознание.
Не столь давно умер один из крупнейших астрономов — Жорж Эдуард Леметр. Он был не только профессором университета, но и аббатом, а одно время даже президентом Папской академии наук. Могут спросить: как же в одном человеке совмещались две разные личности? Оставляя эту загадку психологам, обратимся к его научной деятельности.
Он был создателем ныне общепризнанной теории «большого взрыва», согласно которой все вещество известного нам мира было некогда сжато в один ком (Леметр называл его «атом-отец»), потом он взорвался, породив разбегающиеся до сих пор галактики, все звезды и планеты. Сам Леметр был далек от того, чтобы признать это актом божественного творения. Во всяком случае, в его научных трудах я не встречал слово «бог». Президент Папской академии мог бы сказать, как некогда Лаплас, что в этой гипотезе он не нуждался. Однако богословы всех мастей- ухватились за теорию «большого взрыва», а папа Пий XII объявил ее лучшим подтверждением деятельности «творца».
Но, может быть, Ж. Леметр молча соглашался с такой интерпретацией своей теории? На XI Сольвеевском международном конгрессе 1958 г. он весьма недвусмысленно заявил: «В той мере, в какой я могу судить, такая теория полностью остается в стороне от любых метафизических или религиозных вопросов. Она оставляет для материалистов свободу отрицать любое трансцендентное бытие».
Итак, даже будучи аббатом, Леметр вопросы веры и знания не смешивал. Но не следует думать, что вера и наука могут мирно сосуществовать. Между ними — вечная борьба. Иногда она идет в душе одного и того же человека, чаще — между разными людьми.
Бывает, что для доказательства ограниченности нашего познания и утверждения идеи сверхъестественного говорят: узнать о Вселенной все принципиально невозможно. При этом приводят в пример миры, до которых даже свет летит миллионы и миллионы лет. Говорят, что они вряд ли достижимы для познания человеком, жизнь которого так коротка.
На мой взгляд, нет никаких оснований ставить какие-либо пределы человеческому познанию. Все развитие науки подтверждает это. Например, раньше некоторые ученые считали, что человечество никогда не узнает, из чего состоят звезды, так как для этого нужно туда слетать. А вскоре был изобретен спектральный анализ, снявший это ограничение.
В астрономии существуют чрезвычайно сложные проблемы. Например, происхождение Солнечной системы. Нам достоверно известна на сегодня лишь одна семья планет, вращающаяся вокруг своей звезды, здесь пока просто не с чем сравнивать. Или возьмем прогноз движения тысяч небесных тел в нашей Солнечной системе. Для точного решения уравнений с учетом взаимных влияний этих тел пришлось бы произвести невообразимое количество вычислений. Во всех этих случаях мы пока ограничены в средствах: не хватает мощности телескопов, быстродействия ЭВМ или данных для создания теорий. Возможно, некоторые проблемы нам так и не удастся решить. Ну разве, например, нет вымерших видов, которые нельзя уже реконструировать, ибо не сохранились их останки? А разве в истории литературы не было так, что рукопись погибла и гениальное произведение воспроизвести уже никогда не удастся (вспомним хотя бы судьбу второй части гоголевских «Мертвых душ»). Но такие факты не могут служить основанием для пессимизма: ведь общая картина и в том и в другом случае нам ясна, движение науки вперед не остановилось.
Настоящий ученый не может навязывать природе какие-либо априорные представления. Одних угнетает то, что Вселенная бесконечна, других наоборот — что она может оказаться замкнутой. Важно иное: что реально говорят наблюдения, какова она на самом деле! Сегодня, например, мы не знаем способов и не располагаем средствами, которые бы позволили нам заглянуть за грань наблюдаемого мира. Но вспомним историю: человечество всегда ощущало, что живет в замкнутом мире. Когда-то это были Геракловы столбы, потом твердый свод неба и неподвижные звезды… И всегда люди, исходя из современного им уровня науки, не зная, как заглянуть за грань неведомого, в конце концов ее переступали.
Мне кажется, что настоящий ученый прежде всего не должен укладывать факты в прокрустово ложе построенных им гипотез. Такой путь ведет к лженауке. «Все подвергай сомнению» — если бы этот девиз не выдвинули древние, его бы наверняка придумали современные естествоиспытатели.
Однако значит ли это, что в науке нет ничего устойчивого, постоянного? Разумеется, нет! И-законы Ньютона, и положения теории относительности Эйнштейна верны на все времена. Только существуют определенные границы, в рамках которых их можно применять.
То, что уже известно о Вселенной, сравнивают иногда с раздувающимся шаром: чем больше он становится, тем дальше отодвигается граница с неведомым. Разумеется, там, на грани света знаний и тьмы неизвестного, могут временно закрепиться сторонники религиозных воззрений. Но свет наступает неодолимо, и тщетно пытаться паразитировать на не познанных еще человеком проблемах. Материализм по самой своей природе оптимистичен и не оставляет места идеализму в объяснении природы.