В статье, посвященной этой жгучей проблеме, он утверждает, что хищническое отношение человека к природе — следствие не стихийного развития производительных сил в антагонистических обществах, а отход общества от идей древних религиозных культов, обожествлявших Землю со всеми ее богатствами. А. Тойнби признает, что монотеистические религии (христианство, иудаизм) сыграли в психологическом настрое людей по отношению к природе отрицательную роль. Но сама по себе религия, утверждает он, имела и имеет решающее значение и в истории общества, и во взаимоотношениях людей со средой. Поэтому «лекарство, нужное современному человечеству, — это отход от монотеистического мировоззрения к политеистическому, более древнему и некогда повсюду распространенному…». И далее: «Мировоззрение, которое вытекает из этих более мудрых и менее агрессивных религиозных и философских традиций, подает нам сегодня надежду на спасение человечества».
Итак, спасение есть, но заключается оно, по сути, опять же в религиозной вере. А как же быть с научным исследованием проблемы и рекомендациями ученых?
Выдвигая свою концепцию, А. Тойнби удивительным образом не замечает, что она ведет к отказу от активного и разумного использования природы для прогресса человечества, к отказу от специфического человеческого способа взаимоотношения с природой, от всех благ цивилизации, но отнюдь не к исправлению ошибок в этих взаимоотношениях.
Истинный путь к решению проблемы есть. И заключается он отнюдь не в возврате к религиозной вере, хотя бы и древней, а в прогрессивных социальных преобразованиях, в строгом научном исследовании, в отыскании и приведении в действие активных способов упорядочения процесса взаимодействия индустриального общества и природы в глобальном масштабе.
Ответ на вопросы, беспокоящие человечество, невозможен также без строго научного мировоззренческого подхода к системе человек — природа. А как известно, такой подход дает лишь марксистско-ленинское учение, раскрывающее материальные закономерности развития природы и общества. Вот почему самый широкий простор для наиболее реального решения задачи урегулирования отношения человека с окружающей средой открывает перед людьми социалистический способ производства, общество развитого социализма, в котором господствует научное, материалистическое мировоззрение.
Ученые рассказывают
Б. М. Валяев, кандидат геолого-минералогических наукРитмы Земли и космоса
Ритмы и циклы природных процессов
В июле 1967 г. английские астрономы приняли с помощью радиотелескопа упорядоченные сигналы, которые исходили со стороны одного из небольших, невидимых в обычные телескопы, звездных источников. Сразу же возникло предположение, что эти сигналы посланы разумными существами с какой-то далекой неведомой планеты.
Такое открытие могло стать поворотным в истории человеческой цивилизации. Рискуя приоритетом, четыре месяца английские ученые не объявляли о своем открытии. Они накапливали данные и еще и еще раз анализировали результаты — не помехи ли это? Нет, упорядоченные сигналы были реальными.
Но на протяжении недель и месяцев всплески на записях были монотонными и повторялись со строгой периодичностью, которая по правильности хода могла соперничать с точными часами. С версией о том, что эти сигналы посылались разумными существами с невидимой планеты, пришлось распрощаться, стало ясно, что открыт неизвестный ранее тип звездных объектов. Они получили название пульсаров. В самом этом названии подчеркнута главная особенность деятельности новых космических объектов — ее резко, но правильно колеблющийся, пульсирующий характер, ее периодичность или цикличность.
По частоте всплесков (от нескольких сотых долей секунды до нескольких секунд, чаще 0,5–1 сек.) и регулярности их повторения пульсары, пожалуй, рекордсмены среди космических объектов. Но в целом повторяемость в ходе, в развитии природных процессов самого разного масштаба — это не какое-то редкое, а скорее, наоборот, обычное явление.
Вспомним приливы и отливы в морях и океанах, смену дня и ночи или времен года на Земле, солнечные и лунные затмения. Геологи могли бы подсказать, что и в изменении лика Земли заметна повторяемость: оледенения и отступления ледников, колебания уровня Мирового океана, формирование, высочайших горных систем, а затем выравнивание, великие вымирания и расцвет новых групп фауны и флоры — все это происходило на протяжении геологической истории Земли неоднократно. Но эти процессы не были строго циклическими. Так, оледенения разделены друг от друга разными отрезками времени, да и по силе (по площади распространения) они резко отличались. Поэтому в большинстве случаев правильнее говорить не о цикличности, а о ритмичности, о повторяемости природных явлений лишь в общих чертах.
Ритмичностью природных процессов в последнее время заинтересовались специалисты самого разнообразного профиля. А произошло это потому, что одинаковая ритмичность оказалась свойственной для, казалось бы, совершенно несопоставимых, не взаимосвязанных процессов. Действительно, что может связывать колебания урожаев пшеницы или уловов сельди в Атлантике с изменением числа пятен на Солнце? Или как может зависеть добыча пушнины на севере от числа полярных сияний? Можно напомнить также, что колебания солнечной активности, наиболее отчетливое из которых имеет И-летнюю периодичность, сказываются на интенсивности роста деревьев, развитии эпидемий холеры, чумы, гриппа, смертности от инфаркта миокарда, нашествиях грызунов, саранчи и др. И тем не менее оказывается, что причинно-следственная цепь, связывающая активность Солнца с жизнедеятельностью растений и животных на Земле, существует. Ныне она уже прослежена геофизиками и биологами.
Ну а как объяснить, что в таких различных явлениях, как частота появления комет, падения метеоритов, вспышек новых и сверхновых звезд, проявляется та же 11- и 22-летняя периодичность, что и для солнечной активности. На основании этого некоторые исследователи, например ленинградские ученые Е. В. Максимов, А. В. Шнитников, приходят к выводу о существовании «таинственных» ритмических импульсов, которые приходят из глубины космоса, вызывая ритмические колебания в Солнечной системе и даже во всей Вселенной.
Такая постановка вопроса правомерна. Но следом за ней начинаются сомнения и даже разочарование. А с чем связана таинственная ритмичность процессов в космосе и насколько она сложна? К сожалению, число таких космических пульсов (равно как и их периодичность) установить пока не удалось. Очевидно, оно должно быть очень большим, поскольку уже сейчас можно назвать десятки и сотни природных процессов, происходящих с самыми различными (от долей секунды у пульсаров до сотен миллионов лет для главных эпох горообразования на Земле) периодами.
Можно ли найти доступное для понимания объяснение ритмичности природных процессов? И тем более можно ли научно объяснить проявление одинаковой ритмичности в, казалось бы, несопоставимых процессах, явлениях? Оказывается, во многих случаях можно.
Пятна на Солнце и эпидемии на Земле
Семнадцать лет непрерывных наблюдений диска Солнца немецким любителем-астрономом Г. Швабе с целью открытия еще одной наиболее близкой к нашему светилу планеты в момент ее прохождения на фоне диска Солнца не увенчались успехом. Зато в 1843 г. он сообщил, что изменение числа и конфигурации пятен на Солнце происходит с 10-летней периодичностью. Вскоре швейцарский астроном Р. Вольф нашел более точное значение этого периода 11 1⁄9 года и предложил оценивать солнечную активность по особому индексу, получившему его имя. Индекс Вольфа характеризует «запятнанность» Солнца и равен сумме числа солнечных пятен и удесятеренного количества их групп на видимой его стороне.
Уже на протяжении более ста лет индекс Вольфа остается самым простым и удобным критерием для оценки активности солнечной деятельности, так как образование пятен на Солнце находится в тесной взаимосвязи с возникновением других центров активности в солнечной атмосфере — факелами, вспышками, протуберанцами и др. Проведенные за этот период исследования подтвердили и вывод Р. Вольфа, что главным в деятельности Солнца является 11-летний цикл, хотя продолжительность этого цикла и колеблется в пределах от 7 до 16 лет,
Но, пожалуй, еще более интересным оказалось то, что и для многих процессов на Земле характерна та же самая одиннадцатилетняя периодичность. Так, сто лет назад была установлена прямая зависимость между числом магнитных бурь и полярных сияний в атмосфере Земли и изменением числа пятен на Солнце. В то время представлялось совершенно непонятным, как может Солнце с расстояния в 150 миллионов километров «трясти» магнитное поле Земли и зажигать полярные сияния.
Сейчас, когда исследование околоземного пространства производится не только наземными средствами, но и с помощью искусственных спутников Земли, многое стало ясным. Оказалось, что от Солнца к Земле постоянно идет поток заряженных частиц — корпускул — так называемый солнечный ветер. Он «сдувает» силовые линии магнитного поля Земли, образуя протяженный хвост-шлейф в магнитосфере Земли (рис. 1). В шлейфе постепенно улавливаются заряженные частицы и таким образом скапливается значительное количество энергии, которая может освободиться даже от небольшого толчка. Именно таким толчком может оказаться усиление солнечного ветра — например, в связи с выбросом облака плазмы при солнечной вспышке, — а это приводит как бы к закорачиванию силовых линий. Плазма из шлейфа устремляется к Земле. Заряженные частицы движутся вдоль силовых линий, оканчивающихся в зонах полюсов, и вызывают там возмущения — полярные сияния. Вот причина взаимосвязи солнечных вспышек с возмущениями магнитосферы Земли, с северными сияниями, вот причина одинаковой периодичности этих процессов.
Еще в конце прошлого века появились работы, в которых была подмечена связь периодичности в солнцедеятельности с цикличностью атмосферных (погодных) явлений. Это касалось температуры и давления воздуха у поверхности Земли, количества осадков и уровней рек и озер, неравномерности возникновения циклонов, ураганов, смерчей, бурь в экваториальной зоне.
Позднейшие исследования подтвердили и детализировали сделанные выводы, выявив, в частности, что микроклиматическим колебаниям свойствен не столько 11-летний, сколько 6- и 22-летний циклы. Так, в большинстве районов мира особенно жестокие засухи повторяются с интервалом около 22 лет, причем, как правило, вблизи минимума солнечной активности, следующего после максимума в четных солнечных циклах[18]. Кстати, аномальное лето 1972 г., когда в центральных районах европейской части СССР горели леса и торфяники, приходится также на минимум солнечной активности после эпохи максимума (1969 г.) четного двадцатого 11-летнего цикла солнечной активности. 22-летний цикл проявляется и в планетарных колебаниях климата: в максимумах четных циклов атмосферное давление в умеренных широтах повышено, а в приполярной области понижено, а в максимумах нечетных циклов — наоборот.
До последнего времени механизм взаимосвязи пертурбаций погоды и климата с колебаниями солнечной активности оставался неясным. Как известно, Солнце относится не к переменным, а к «спокойным» звездам, характеризующимся высокой стабильностью суммарной излучаемой энергии солнечной постоянной, которая колеблется в пределах 1–2 процентов (почти в пределах точности определения самой постоянной).
Однако солнечные возмущения сопровождаются качественными изменениями спектра излучаемой энергии: резко возрастает доля энергии рентгеновских, ультрафиолетовых и радиоволн, а также электрически заряженных и более «жестких» частиц — корпускул. Высокоэнергичные частицы способны преодолеть и магнитное поле Земли, и верхние слои атмосферы, передавая свою энергию непосредственно в метеорологически активные слои. Правда, количество привносимой при этом энергии не может заметно влиять на температуру и, следовательно, сказываться в циркуляции нижних слоев атмосферы (тропосферы). Но в связи с неравномерным распределением собственной энергии тропосферы и наличием в ней зон неустойчивого динамического равновесия дополнительная энергия может сыграть роль «спускового крючка», провоцирующего лавинообразный процесс нарушения равновесия и перераспределения энергии (а следовательно, и разнообразные метеорологические феномены) в нижней атмосфере.
Проявление 11-летней ритмичности в биологических процессах также тесно коррелируется с ходом солнечной активности. Основатель нового раздела науки — гелиобиологии — советский ученый А. Л. Чижевский еще в довоенных публикациях отмечал около трех десятков феноменов в органическом мире Земли, изменчивость которых во времени тесно связана с изменениями солнечной активности. В их число попали величины урожаев различных сельскохозяйственных культур, рост древесины, время цветения растений, эпифитии (эпидемические болезни растений), эпизоотии (эпидемические болезни животных), размножаемость и миграции насекомых (саранчи и др.), рыб, животных (грызунов, пушных), разнообразные болезни (гипертония, атеросклероз, инфаркт миокарда, неврозы и т, д.), эпидемии и смертность среди людей и др. В качестве иллюстрации можно привести зависимость между вспышками холеры и солнечной активностью в прошлом столетии (рис 2). Напомним, что и последние вспышки холеры в Одессе и Астрахани (1969 г.) тоже падают на максимум солнечной активности. Воздействие колебаний солнечной активности на биосферу также происходит не прямо, а косвенно через ряд промежуточных звеньев. Один из механизмов проявляется через колебания магнитного поля Земли, провоцируемые пертурбациями на Солнце. К колебаниям магнитного поля чувствительны растения, животные, человек. Эксперименты показали, что электромагнитные волны сверхнизких частот могут непосредственно влиять на мозг человека, поскольку диапазон колебаний излучений Солнца близко совпадает с диапазоном волн электромагнитных излучений мозга человека. Колебания солнечной активности, вызывая изменение погоды, климата — в частности, за счет вариаций увлажненности, — влекут за собой ритмические колебания условий существования в растительном и животном мире.
Не проходят бесследно и колебания в уровне радиации. Численность популяций (количество) животных в пределах отдельных видов тесно связана с изменениями окружающей среды. Неудивительно поэтому, что фиксируется уже упомянутая связь числа убитых пушных зверьков (песцов, лис, зайцев) с количеством полярных сияний. Неудивительно, поскольку вскрыты механизмы влияния и на численность популяций, и на интенсивность полярных сияний солнечной активности, проявляющейся в запятнанности Солнца.
Еще более резко, чем 11-летняя, в биосфере проявляется сезонная и суточная, а также близсуточная (циркадная) ритмичность, механизмы которых, очевидно, связаны с вращением Земли вокруг своей оси и вокруг Солнца. Живые организмы адаптировались к ритмической смене параметров среды обитания. В процессе эволюции возникли физиологические приспособления, способствующие согласованию функций организма с условиями внешней среды. Смена сезонов определяет рост, развитие и гибель растений. Суточное вращение Земли сопровождается ритмичными колебаниями температуры, освещенности, влажности, давления, электромагнитного поля, уровня радиации и т. д. Суточный ритм определяет условия обмена веществ в растениях, двигательную активность (фазы бодрствования и покоя) животных.
Ритмический характер физиологических процессов живых организмов сформировался благодаря их способности чувствовать время. Опыты показывают, что и в условиях постоянной освещенности или постоянной темноты суточный ритм жизнедеятельности животных и растений сохраняется, хотя и отклоняется незначительно от строгой 24-часовой периодичности. Следовательно, околосуточный и другие ритмы внутренне присущи, свойственны объектам живого мира, то есть являются эндогенными. Известны эндогенные ритмы с частотой от двух тысяч биений в секунду до одного цикла в год и с более длительным периодом. Среди них можно упомянуть нервные импульсы, дыхание, ритмы сердцебиения, пульса, кровяного давления, суточные ритмы физиологической, двигательной, умственной активности, колебания в глубине сна и т. п.
Безусловно, в выработке биохимических ритмов решающую роль сыграл и естественный отбор, поскольку выжить и развиваться могли только те виды растений и животных, внутренние, эндогенные ритмы биологической активности которых были близки к ритмам изменения условий окружающей среды. Параметры же последней в значительной мере обусловлены периодами вращения Земли, а также неравномерностью работы Солнца.
С чем же связана сама 11-летняя цикличность работы нашей слабопеременной звезды — Солнца? Ясно, что какой-то внешний фактор должен вызывать возмущения, повторяющиеся каждые 11 лет. Единственной очевидной причиной может быть лишь возмущающее влияние на Солнце его сателлитов планет. При обращении планет их притяжение должно волновать поверхность Солнца примерно так же, как притяжение Луны вызывает приливы и отливы в океанах и даже в твердой оболочке Земли. Именно такую идею развивал в начале нашего века английский ученый Э. Браун, хотя впервые сама мысль об управлении планетами работой Солнца была высказана Р. Вольфом.
В том, что притяжение планет может вызывать приливные эффекты на Солнце, нет сомнения, но расчеты показали, что эти силы слишком малы, чтобы вызвать появление на Солнце таких огромных центров активности, как группы солнечных пятен размерами в сотни тысяч километров. Однако за последние годы получены новые данные, подтверждающие «виновность» планет в периодических колебаниях солнечной активности.
В 1965 г. американский астроном П. Джозе отметил, что центр тяжести Солнечной системы не совпадает с центром Солнца. По его расчетам получилось, что Солнце должно обращаться вокруг центра Солнечной системы с периодом 178,77 года. Ранее тот же самый 178-летний период был найден для цикличности солнечной активности при обработке всех имеющихся данных о солнечной активности (индексов Вольфа). А вскоре, в том же 1965 г., английские ученые Р. Вуд и К. Вуд, сопоставив уравнения, описывающие движения планет вокруг нашего светила, с уравнениями, отражающими их гравитационное воздействие на поверхность Солнца, обнаружили все тот же отчетливый 11-летний цикл. Его точное значение — 11,08 года. При этом они учли влияние не только внешних больших (Юпитер, Сатурн и др.) планет, как это сделал П. Джозе, но и внутренних (Меркурий, Венера, Земля и Марс).
Они показали, что в результате вращения планет центр тяжести Солнечной системы непрерывно смещается, а Солнце неустанно стремится к нему. В результате несогласованных «действий» планет Солнце испытывает рывки-джерки («jerk»), которые должны приводить к возникновению вспышек на Солнце и образованию пятен. Этот анализ дал возможность прогнозировать ближайшие вспышки на Солнце, причем точность прогноза оказалась поразительной. С помощью электронно-вычислительной машины американский исследователь Д. Кинг-Хили произвел более точные вычисления возмущающих влияний планет на Солнце и дал прогноз солнечной активности (предсказал значение индексов Вольфа) почти на два десятилетия вперед. Если этот прогноз осуществится — а пока он сбывается, — скептикам придется согласиться, что положение планет играет большую роль в ходе природных процессов на Земле.
Каким же образом карлики планеты способны управлять гигантом Солнцем? Безусловно, образование центров активности на поверхности Солнца не обусловлено возмущающими воздействиями планет. Но в условиях неоднородности работы солнечной «машины», резкой неравномерности выноса энергии с различных участков поверхности Солнца там складывается обстановка неустойчивого динамического равновесия. При таком положении и незначительные возмущения от планет могут становиться дополнительным фактором, вызывающим изменения и создание нового, несколько отличного от прежнего динамического равновесия.
Приливы и климатические катаклизмы
Вспомним о приливах. Даже человек, никогда не бывавший на берегах океана, все равно много слышал и читал о приливах. Приливы проявляются не только в водах морей и океанов, приливы захватывают и верхнюю твердую оболочку Земли — литосферу, а также ее воздушную оболочку. На широте Москвы Земля под нашими ногами каждый день поднимается почти на 40 сантиметров, а мы этого даже не замечаем. Другое дело на побережье морей и океанов. Здесь зачастую условия судоходства контролируются ходом приливов и отливов.
Уже в глубокой древности было замечено, что время наступления приливов связано с положением Луны на небосводе, а их сила — с ее фазами. Теперь мы знаем, что приливы на Земле вызываются силой притяжения Луны и Солнца, то есть существуют лунный к солнечный приливы. Луне нужен почти месяц, чтобы совершить один оборот вокруг Земли. И дважды за это время Луна, Земля и Солнце оказываются почти на одной прямой (то есть плоскости орбиты Луны и Земли расположены под небольшим углом друг к другу). Тогда приливные волны от Солнца и Луны складываются и приливы в морях и океанах бывают максимальными. Такие приливы называют сизигийными. А дважды в месяц, когда Солнце и Луна расположены по отношению к Земле почти под прямым углом, приливы в океанах минимальны, так как солнечный прилив вычитается из лунного, как бы частично его гасит.
Но и сами слагаемые, то есть приливные волны, вызываемые Солнцем и Луной, постоянно изменяются, поскольку Луна и Земля вращаются не по круговым, а по эллиптическим орбитам. Когда Луна находится к Земле ближе всего, в точке перигея, лунный прилив усиливается на 40 процентов. Наклон плоскости лунной орбиты по отношению к плоскости орбиты Земли изменяется, и каждые 18,6 года эти плоскости совпадают, а прилив усиливается. При таком положении солнечные и лунные затмения случаются гораздо чаще. Еще в Древнем Египте тайна цикличности солнечных затмений была разгадана, период вращения в 18,6 года был назван «Сарос». Это позволило египетским жрецам составить календарь затмений на много лет вперед и предсказывать их наступление с большой точностью.
Наконец, через каждые 1800–1900 лет Луна, Земля и Солнце входят в полосу «сверхсароса». В это время не только совпадают орбиты Луны и Земли, но Луна находится на своей орбите ближе всего к Земле, а Земля — ближе всего к Солнцу. И тогда наступает эпоха наиболее сильных приливов.
Таким образом, приливы дают прекрасный пример многослойной ритмичности с полусуточным, двухнедельным, 18,6-летним и 1850-летним периодами. Но что любопытно, с такими же периодами на Земле имеется и множество других ритмически повторяющихся природных процессов.
Выше уже упоминалось о «Саросе» — периоде в 18,6 года для ритмично повторяющейся череды солнечно-лунных затмений. Исследования советских географов, и в первую очередь А. В. Шнитникова, позволили выявить резкие колебания в увлажненности, динамике многих компонентов ландшафтной оболочки, происходящие с периодом в 1850 лет. Именно с таким периодом 8 раз за последние 15 тысяч лет наступали и отступали горные ледники. Как выявилось, наступление ледников контролируется не столько отрицательными температурами (усилием морозов), сколько повышением увлажненности. Колебания увлажненности с периодом около 2000 лет (1850 лет) проявились не только в горах, но и имели глобальный характер. Профессор Г. К. Тушинский приводит целый ряд любопытных и неожиданных сведений о колебаниях климата в Африке, Европе и Азии на основании изучения летописей, наскальных рисунков и других остатков былых цивилизаций (рис. 3). Цветущие оазисы на протяжении истории человека неоднократно превращались в пустыни (Сахара, Средняя Азия), а другие оазисы жизни погребались наступающим ледником (Гренландия).
А. В. Шнитников нарисовал стройную картину причинных взаимосвязей, обусловивших ритмическую миграцию границ ландшафтно-географических зон с периодом в 1850 лет. Она включает колебание приливообразующих сил, внутренних волн океанов, температурного режима океана, ледовитости Арктики, атмосферной циркуляции, температурного режима и увлажненности материков (стока рек, уровня озер, увлажненности торфяников, подземных вод, горных ледников, вечной мерзлоты).
Одним из самых больших стихийных бедствий являются землетрясения. Мы не только не в силах пока их предотвращать, но не умеем даже достаточно уверенно предсказывать их наступление. Любопытно, что и в этом случае фазы Луны помогают делать удачные прогнозы. Как показали исследования бакинского ученого Г. П. Тамзаряна, гораздо более часто землетрясения происходят в дни новолуния или полнолуния, то есть когда Луна, Земля и Солнце находятся на одной прямой и приливные воздействия в твердой оболочке Земли от Луны и Солнца складываются[19]. Статистически достоверно устанавливаются периодические изменения в сейсмичности на Земле, обусловленные приливными колебаниями с суточным, годовым и 18,6-летним периодами. Конечно, и в этом случае землетрясения происходят не от колебаний напряжений внутри земной коры, вызванных приливными воздействиями. Но слабые дополнительные приливные усилия могут, видимо, приводить к разрядке интенсивных эндогенных полей напряжения, охватывающих литосферу. Таким образом, приливные воздействия можно сравнить с искрами или детонаторами, которые, не обладая собственной большой силой, могут воспламенять заряды и вызывать огромные разрушительные взрывы.
В последнее время выяснилось, что суточная, сезонная и многолетняя ритмичность, обусловленная приливными эффектами, ощущается и в более слабых проявлениях активности недр, например в виде горных ударов и выбросов газа в рудниках и шахтах. Есть и другие случаи нарушения тонкого динамического равновесия напряженного состояния горных пород в активных сейсмических зонах ничтожными проявлениями дополнительных внешних возмущающих сил. Примером могут служить землетрясения, спровоцированные инженерной деятельностью человека (строительством и заполнением горных водохранилищ), а также колебаниями солнечной активности (числа пятен на Солнце), механизмы которых пока остаются не разгаданными до конца.
Приливы изменяют ритмичность
В повторности, периодичности природных процессов, явлений так и видится некая неизменность, закостенелость. Но ведь диалектика утверждает, что все изменяется. И диалектика права — изменяется даже ход процессов, имеющих на первый взгляд строго периодический, циклический характер.
Рассмотрим для примера такие, казалось бы, фундаментальные, неизменные величины, как продолжительность суток или года. Земля совершает один оборот вокруг своей оси, и на нее приходят новые сутки, еще оборот — опять сутки. И так без изменений до бесконечности? Нет. Исследователи, интересующиеся точным временем, знают, что даже на протяжении года Земля вращается неравномерно — в августе сутки самые короткие, в марте — самые длинные. Кроме того, продолжительность суток возрастает от года к году, так как скорость вращения Земли вокруг оси прогрессивно замедляется. Замедляется вследствие опять же приливных эффектов в системе Луна — Земля — Солнце.
Земля вращается вокруг своей оси гораздо быстрее, чем Луна вокруг Земли. Поэтому Земля стремится сдвинуть приливной «горбик» на Луне вперед по ходу вращения Луны, тем самым несколько ускоряя ее движение. Напротив, Луна как бы пытается задержать продвижение приливного «горбика» на Земле, тем самым слегка затормаживая вращение Земли (рис. 4). Вот почему со временем вращение Земли вокруг оси все замедляется и замедляется, а Луна, подталкиваемая Землей, движется по слегка раскручивающейся спирали, все более удаляясь от Земли. Чем же это все может кончиться и что было раньше?
Впервые такой вопрос поставил и дал на него довольно обоснованный ответ Д. Дарвин, сын знаменитого натуралиста Ч. Дарвина. Он рассчитал, что «раскручивание» Луны Землей будет продолжаться до тех пор, пока период оборота Земли вокруг оси не сравняется с периодом вращения Луны вокруг Земли. Произойдет это через много миллионов лет, когда сутки на Земле будут длиться 1320 часов (по уточненным подсчетам американского ученого Дж. П. Койнера — 1200 часов) — столько же, сколько и лунный месяц, а Луна станет видна только одному полушарию Земли.
Воздействие солнечного прилива на Землю имеет двойной эффект. С одной стороны, вращение Земли вокруг оси слегка подтормаживается, а с другой вращение Земли по орбите вокруг Солнца постепенно ускоряется, и Земля переходит на все более высокую орбиту. Получается, что продолжительность земного года, как и лунного месяца, должна неуклонно возрастать со временем. Однако этого не происходит. Изучение кораллов, живших в девонском периоде (370 миллионов лет назад), показало, что тогда год на Земле длился 400 суток. А через несколько десятков миллионов лет, в начале каменноугольного периода, продолжительность года уменьшилась до 390 суток. Но, несмотря на то что количество суток в году постепенно уменьшалось, абсолютная продолжительность года на Земле возрастала, с избытком компенсируясь увеличением длительности суток.
Таким образом, на этих примерах можно еще раз видеть, как слабые воздействия (приливные эффекты) приводят к значительным изменениям изменениям самой ритмичности ряда природных процессов, которые в свою очередь могут вызвать изменения в ритмичности других природных явлений (например, различных климатических факторов).
Год длиною в 200 миллионов лет
Если малозаметные приливные воздействия планет способны в значительной степени регулировать солнечную активность, а приливные воздействия в системе Луна — Земля — Солнце резко сказываются на климате, продолжительности суток и года на Земле, тем более серьезные изменения для Солнечной системы должны проистекать из-за перемещения Солнца в пределах Галактики.
Астрономы установили, что Солнце находится недалеко от плоскости симметрии нашей спиралевидной Галактики и, двигаясь со скоростью 240 км/сек., совершает один оборот вокруг центра Галактики примерно за 200 миллионов лет. Этот период называется галактическим годом. Взаимодействие Солнца с окружающими его звездами не остается неизменным во времени: во-первых, на разном удалении от центра Галактики звезды вращаются вокруг него с разной угловой (и линейной) скоростью. Во-вторых, многие из них имеют собственные движения. Так, у Солнца скорость собственного движения составляет 20 км/сек. И наконец, орбита движения Солнца — в Галактике имеет эллиптический характер, а ее плоскость наклонна к плоскости симметрии Галактики.
Таким образом, при своем движении Солнце дважды в ходе галактического года попадает в области с большей концентрацией звезд (вблизи плоскости симметрии) и, кроме того, находится то ближе к центру Галактики (в перигее), то удаляется от него. Все это должно сильно отражаться на активности Солнца, создавая ритмичность крупного масштаба, мегаритмичность, которую ни отдельный человек, ни все человечество не могут заметить непосредственно. Время существования человеческой цивилизации — это лишь миг по отношению к галактическому году протяженностью в 200 миллионов лет. Мы, наши предки и наши потомки живем, жили и будут жить в галактическом декабре.
А насколько отличаются между собой сезоны галактического года и сказываются лк они серьезно на изменениях лика Земли?
Геологи уже давно установили, что наиболее серьезные изменения на Земле происходили с периодом 180–220 миллионов лет. Именно с таким периодом на Земле сменяли друг друга крупнейшие эпохи горообразования каледонская, герцинская, альпийская, происходило вымирание больших групп фауны и флоры в конце палеозоя и мезозоя, крупнейшие трансгрессии и регрессии (наступление и отступление) океана, резкие климатические изменения (сказывающиеся на характере накопления осадков), изменение интенсивности магматической деятельности и т. п. Многие геологи связывают эту ритмичность с ходом галактического года. И в этом случае ритмичность геологических событий оказывается логично увязанной с очень постепенно происходящей, но тем не менее впечатляющей сменой галактических сезонов.
Прогнозы каверзных стихий
С тех пор как стало ясно, что солнечные и лунные затмения связаны с взаимным положением Солнца, Земли и Луны, их оказалось нетрудно предсказать на десятки и сотни лет вперед. Как показано в предыдущих разделах, многочисленные геофизические параметры и процессы также находятся в тесной зависимости от колебаний приливных воздействий, от взаимной конфигурации планет. Почему же в таком случае не попробовать на основе расположения планет прогнозировать колебания погоды и климата, стихийные метеорологические бедствия (ураганы, засухи, наводнения), «козни Плутона» (фазы активизации вулканов, крупные землетрясения)? Оказывается, такие прогнозы делались уже неоднократно и часто оправдывались.
Вот несколько примеров. Английские астрономы более чем за год предсказали мощную протонную вспышку на Солнце 12 ноября 1966 г. Они же предсказали магнитные бури,
полярные сияния и перебои в радиосвязи 3 и 23 июля, 5 и 26 августа и 15 сентября 1967 г. Французский вулканолог Ф. А. Перрет дал удачный прогноз резкого усиления извержения Этны 27 июля 1923 г. Азербайджанский геолог Г. П. Тамразян в 1955 г. опубликовал прогноз активности грязевых вулканов на 1957–1960 гг. Девять крупных извержений за этот период случилось в «запланированные» сроки.
На основании ритмичности в изменении солнечной активности даны и долгосрочные прогнозы глобальных изменений климата Земли в ближайшем будущем. Так, американский метеоролог К. Уиллет предсказал, что в ближайшие 25 лет на Земле произойдет значительное похолодание. В средних широтах будет меньше продолжительных засух, а в северных широтах будут преобладать периоды с недостаточным количеством осадков, в частности в Канаде и Северной Америке. Десятилетний засушливый период ожидает Африку и Азию. По мнению К. Уиллета, повышение температуры на Земле следует ожидать с 2000 по 2030 г. Затем температура вновь заметно снизится, а с 2100 по 2140 г. наступит «мини-ледниковый период».
Данные по периодичности солнечной активности были использованы А. Л. Чижевским для прогноза вспышек эпидемий и эпизоотии. Зависимость хода многих болезней, осложнения их течения, учащения смертельных исходов в связи с пертурбациями магнитного поля ставит в повестку дня организацию служб прогноза и оповещения больных о резких неблагоприятных изменениях геофизических и метеорологических параметров в связи с колебаниями солнечной активности. Подобная служба уже действует в Польше.: Биологи и врачи установили ритмические колебания самочувствия человека с разными периодами. Еще в конце прошлого века была выдвинута теория биоритмов, согласно которой в жизни каждого человека проявляются три цикла: изменение физического состояния с периодом в 23 дня, эмоционального — 28 дней и интеллектуального (колебаний творческой активности) — 33 дня. Критические дни, проявляющиеся в снижении физической и творческой трудоспособности, развитии эмоциональных депрессий проявляются в каждом цикле. Но особенно неблагоприятны те сутки, в которых периодически совладают двойные и особенно тройные критические дни. Необходимость считаться с последствиями подобных биоритмов несомненна для контроля надежности работы специалистов тех профессий, срывы в которых могут повлечь за собой катастрофы с человеческими жертвами (водители, летчики, операторы сложных установок).
Человек может не только познать ритмику интересующих его процессов природы, но и в нужных случаях активно изменять их ход. Врачи уже сейчас дают рекомендации спортсменам для перестройки их месячных и суточных биоритмов, чтобы максимальный, рекордный результат был достигнут именно в день и час ответственных соревнований. Активно вмешиваться и влиять на биоритмы необходимо не только в случаях болезни (например, при расстройствах сна), но и при подготовке к работе в специфических условиях, при использовании новых методов обучения и т. д.
Несмотря на значительные успехи в изучении ритмичности природных процессов, следует отметить, что во многих случаях еще не удается дать уверенный, точный прогноз динамики (ритмики) тех же процессов в будущем. И связано это, как уже отмечалось, с тем, что для большинства природных процессов свойственна многослойная ритмика, с разной амплитудой и с изменяющимся периодом. С помощью гармонического анализа подобные ритмические изменения можно разложить на несколько правильных гармонических колебаний со свойственными им амплитудами и периодом. Таким путем можно вскрыть иерархию периодических процессов, в колебаниях которых в чистом виде отражаются конкретные воздействия отдельных факторов окружающей среды, оказывающих регулирующее воздействие на изучаемый процесс. Однако суммарный эффект от наложения всех воздействий во взаимодействующих системах с учетом обратных связей оказывается настолько сложным, что порой не поддается точному прогнозу. Вот почему и предсказания, основанные на изучении ритмичности, часто носят статистический характер: например, указывается, что опасность землетрясения или урагана в определенные дни месяца, сезона года значительно возрастает. Но когда речь идет о предостережении людей от таких катастрофических явлений, интерес представляет только абсолютный прогноз.
Ритм пронизывает не только явления естественной природы. Он характерен для динамики и некоторых других явлений. О значении ритма в музыке, поэзии говорить излишне. Пока до конца еще неясно, почему одни мелодии, одни сочетания звуков вызывают в человеке радость, другие боль и гнев, а третьи — расслабляют и угнетают. Время от времени в специальной литературе появляются заметки о чувствительности к музыке, ритму не только человека, но и растений. Ритм проявляется и в пространстве, когда оказывается как бы увековеченным и застывшим в виде конкретных форм. Его нетрудно обнаружить в повторах, чередованиях определенных комплексов, слагающих разрезы горных пород, их обнажения или в закономерном сочетании характерных деформаций складок, разрывов. Ритм легко обнаруживается в творениях архитекторов, начиная с планировки городов и кончая деталями (например, колоннады) шедевров мирового зодчества.
Что же такое ритм? Какие существенные черты, свойства реальных явлений и процессов находят в нем отражение?
Ритм связан с закономерностями движения и развития материальных систем и отражает относительную повторяемость в их движении (как отражение динамики их взаимодействия). В нем отражается взаимодействие различных материальных объектов, которое в философии рассматривается в качестве основного закона — закона единства и борьбы противоположностей. Взаимосвязь и взаимодействие природных процессов может выражаться в ритмичном изменении либо только количественных параметров, либо и качественного состояния рассматриваемых систем. Таким образом, ритм является важнейшей особенностью, категорией развития как чисто эволюционных количественных этапов, так и резких, взрывных, революционных потрясений в существовании разнообразных проявлений неорганического и живого мира. И поэтому именно изучение ритмичности может вскрыть трудноуловимые, интимные, но, однако, самые важные взаимосвязи, казалось бы, невзаимосвязанных явлений и процессов.
В последнее время люди начали понимать, что нельзя бездумно и резко нарушать естественный ход природных процессов на Земле, так как печальные последствия таких действий хотя и не сразу, но тем не менее резко проявляются по принципу обратной связи. Вспомним загрязнение рек, озер и атмосферы промышленными отходами. Хотя Земля и велика, но она не бесконечна. Даже беглое исследование показывает тесную и часто неожиданную взаимосвязь многих ее природных процессов.
Таким образом, от осознания и изучения механизмов глобальной взаимосвязи природных процессов мы сейчас переходим к пониманию взаимосвязей в космических, галактических масштабах. И несомненно, интенсивное изучение космического пространства, проводимое советскими учеными и исследователями других стран, даст много нового и неожиданного для познания и земных процессов.
Уже сейчас изучение ритмичности природных процессов носит отнюдь не абстрактный, академический характер. Прогноз многих природных процессов и явлений, начиная от стихийных бедствий и кончая стоком рек или ледовитостью морей, может сэкономить не только многие миллионы рублей, но и спасти многие человеческие жизни. А такие прогнозы в значительной мере могут базироваться на познании и понимании механизмов ритмики природных процессов.
М. И. Будыко, член-корреспондент АН СССР, лауреат Ленинской премииМожно ли преобразовать климат!
За последние десятилетия, особенно в последние годы, мы много слышим и говорим о том, что развитие техники оказывает большое и часто губительное действие на окружающую среду: происходит загрязнение воздушного и водного бассейнов, исчезают леса, мелеют реки, заболачиваются озера, сокращаются рыбные запасы, находятся под угрозой исчезновения многие виды диких животных. С другой стороны, известно, что при соблюдении необходимых мер предосторожности современная цивилизация может мирно «сосуществовать» с окружающей средой, в чем, между прочим, наглядно проявляется факт, что человек постепенно учится властвовать над стихийными природными процессами.
Что же касается климатических условий, то еще недавно казалось бесспорным, что человеческая деятельность не оказывает сколько-нибудь заметного влияния на среднегодовые температуры, характерные для того или иного района, на количество выпадающих в течение года осадков, на число солнечных дней и т. п. Однако сейчас на вопрос: «Происходят ли в климате изменения, которые могут быть объяснены деятельностью человека?» — уже можно дать утвердительный ответ: да, происходят, правда еще в сравнительно небольших пределах.
Всем, например, хорошо известно: в нашей власти изменить «климат» внутри дома — согреть комнаты в самую лютую стужу или охладить воздух в квартире с помощью кондиционера в жару. Установлено также, что в больших городах за счет сжигания больших количеств топлива и некоторых других факторов происходит изменение микроклимата — в них становится несколько теплее, чем в близлежащих районах. Изменения же среднегодовых температур оказывает в свою очередь определенное влияние на число пасмурных дней, на количество выпадающих осадков. Впрочем, тут действует и еще один фактор, а именно резкое возрастание количества пыли и дымовых частиц в воздухе над городами.
Сильное «запыление» атмосферы может привести даже к более значительным изменениям климата. Многие геологи и климатологи считают, например, что происходившие на Земле неоднократные оледенения были связаны с активизацией вулканической деятельности. Ведь во время извержений в атмосферу выбрасывалось огромное количество дыма и пепла, которые уменьшали прозрачность атмосферы, а следовательно, земная поверхность получала меньше солнечного излучения. Вот почему вслед за периодами бурной вулканической деятельности следовали ледниковые периоды. С другой стороны, некоторое потепление климата, наблюдавшееся в первой половине нашего века, вероятно, связано было с тем, что в предшествующие десятилетия не происходило сильных массовых извержений вулканов. В результате понизилась концентрация пыли в нижних слоях атмосферы, и земная поверхность стала лучше прогреваться.
А вот сегодня человек в процессе своей хозяйственной деятельности начинает в ряде случаев «состязаться» с вулканами: кто больше выбросит пылевых частиц в атмосферу. Впрочем, трудно высказать какие-либо определенные предположения о том, как повлияет запыление атмосферы на климат будущего, — ведь пока неизвестно, насколько сильно изменится концентрация пыли в атмосфере под воздействием человеческой деятельности. С одной стороны, заводские трубы выбрасывают тучи дыма, а с другой — уже принимаются эффективные меры к тому, чтобы уменьшить загрязнение воздуха.
Многие города сегодня разрастаются в так называемые мегаполисы, образуют районы сплошных застроек, тянущихся на сотни километров. Соответственно в этих районах изменяется и микроклимат. Действует на климат и интенсивное промышленное производство — тут счет идет уже на многие тысячи квадратных километров. Собственно, пора говорить об изменении человеком климата в весьма значительных масштабах. По сути дела, речь идет уже не о «микроклиматах», а о «районных климатах», «местных климатах» соответствующего термина еще не выработано, хотя само явление существует.
Но дело не ограничивается тем, что, сжигая топливо, мы буквально согреваем атмосферу, во всяком случае ее приземные слои. Приход и расход тепла в очень большой степени определяется не только наклоном, углом, под которым падают на данную территорию солнечные лучи, но и условиями, определяющими отражение солнечного тепла в мировое пространство. Известно, например, что вода служит прекрасным аккумулятором солнечной энергии. И когда мы создаем огромные водохранилища, то тем самым оказываем воздействие на баланс солнечной энергии. Леса и открытые пространства по-разному отражают солнечный свет. Значит, уничтожая леса, заменяя их пашнями, мы тоже воздействуем на климат.
Еще одно важное обстоятельство. При сжигании топлива выделяются огромные количества углекислого газа. Как известно, его поглощают зеленые растения, усваивающие содержащийся в нем углерод и выделяющие в воздух кислород. Но растения уравновешивают, так сказать, естественный кругооборот углерода и кислорода на планете. Те же добавочные порции углекислого газа, которыми человек в процессе своей деятельности насыщает атмосферу, постепенно накапливаются в ней. Допустимый для нормальной жизнедеятельности человеческого организма предел насыщения воздуха углекислым газом не будет превышен еще в течение сотен, а может быть, и тысячи лет. Но это никак не должно нас успокаивать. Дело в том, что углекислый газ практически прозрачен для световых лучей, но непрозрачен или плохо прозрачен для лучей тепловых. Солнечные лучи поглощаются землей, растительностью, водной поверхностью, которые, нагревшись, сами становятся источниками теплового излучения. А накопление углекислого газа в атмосфере приводит к тому, что значительная часть тепловых лучей, которая раньше уходила в мировое пространство, теперь задерживается в нижних слоях атмосферы. Мы имеем тут дело с так называемым «тепличным эффектом» (подобным образом создается микроклимат в теплицах).
Есть и другие факторы, приводящие к тому, что уже сейчас под влиянием человеческой деятельности наблюдаются некоторые — подчеркнем еще раз: пока что незначительные — изменения климата на довольно больших территориях. Эти изменения ощущались бы гораздо сильнее, если бы ветры не перемешивали атмосферу, не уравнивали условия на огромных пространствах. Но тут возникает еще одна проблема: окажется ли нивелирующее воздействие ветров достаточным, чтобы предотвратить заметные климатические изменения в будущем?
Чтобы ответить на этот вопрос, необходимо составить себе представление не только о масштабах воздействия человека на окружающую среду в настоящее время, но и на то, каковы тенденции развития такого рода воздействий.
Установлено, что сейчас производство энергии возрастает во всем мире примерно на 6 процентов в год. Если такие темпы роста сохранятся и в будущем — а никаких признаков возможности замедления прироста пока нет, то последствия могут оказаться весьма серьезными. В самом деле, при шестипроцентных годовых приростах удвоение производства энергии происходит примерно каждые 10 лет. А это означает, что в течение века производство энергии возрастет более чем в тысячу раз. И если сейчас нагрев атмосферы за счет производства энергии еще очень мал по сравнению с тем, как прогревается атмосфера солнечными лучами, то через 100 лет — всего лишь через 100 лет — соотношение природного и промышленного тепла существенно изменится.
Однако и само по себе ежегодное увеличение производства энергии на 6 процентов достаточно для того, чтобы к середине XXI в. началось быстрое повышение планетарной температуры. Расчеты показывают, что влияние дополнительного, связанного с хозяйственной деятельностью человека тепла на единицу площади в любом районе Земли окажется столь же значительным, как и влияние того дополнительного притока тепла, за счет которого происходит повышение среднегодовых температур в районах больших городов. Значит, опасность перегрева всей атмосферы совершенно реальна.
Таким образом, развитию энергетики в будущем может помещать не истощение запасов топлива, а некий «тепловой барьер», определяемый недопустимостью перегрева нашей планеты. В связи с этим возникла идея — у нас ее защищает академик Н. Н. Семенов — о целесообразности широкого использования в будущем для хозяйственных целей солнечной энергии. В этом случае потребление энергии может расти безгранично без угрозы перегрева атмосферы. Ведь использоваться будет та энергия, которая теперь все равно расходуется на нагревание воздуха.
Но тут следует сделать существенную оговорку. Главная опасность состоит не в том, что мы, как печкой, перегреем нашу планету. Гораздо раньше, чем это случится, могут наступить глубокие изменения климата в результате того, что нарушатся отдельные элементы, части той сложной «машины погоды», которая определяет привычные нам климатические условия: влажный и теплый климат побережья Черного моря, сухой и жаркий — в среднеазиатских республиках, резко выраженный континентальный — в большей части Сибири и т. д.
Допустим, что в результате некоторого потепления, вызванного увеличением производства энергии и возрастанием содержания углекислого газа в атмосфере, в какой-то момент начнется медленное отступление полярных льдов, увеличится пространство чистой воды. Вода будет аккумулировать солнечное тепло, которое теперь отражается от поверхности льда. В итоге замедлится замерзание водоемов в зимние месяцы, толщина ледяного покрова, нарастающего в зиму, уменьшится. На следующий год площадь чистой воды за счет этого окажется еще большей. Такая тенденция может в обозримые сроки резко уменьшить поверхность «ледяной шапки», окружающей Северный полюс. А это в свою очередь нарушит установившийся в течение многих тысячелетий характер воздушных потоков, перемещающих холодный арктический воздух в низкие широты. В результате изменится весь годовой ритм «машины погоды». Не исключено, что это отразится — и очень сильно — на распределении осадков на территории континентов. Может начаться наступление пустынь на основные районы земледелия.
А вот вам и совершенно иная перспектива. Реки, впадающие в Ледовитый океан, в первую очередь наши могучие сибирские реки, несут в него не только свои воды, но и огромные запасы тепла — температура речной воды выше температуры воды в этом океане. Существуют проекты изменения речного стока, отведения значительной части стока сибирских рек в районы, страдающие от засух, или в промышленные районы, где потребность в воде уже не покрывается наличным речным стоком. Но если при этом превысить некоторый предел, то баланс тепла в прибрежных районах Ледовитого океана настолько нарушится, что летом лед будет таять гораздо медленнее, чем теперь. Ухудшатся условия плавания по Северному морскому пути, а главное, летнее тепло перестанет аккумулироваться водами самого океана. Как следствие этого, ежегодно начнут сокращаться поверхности, освобождающиеся летом от ледового покрова. И так, стремительно нарастая, начнется наступление льда на материк.
Во взглядах климатологов в последнее время произошли большие изменения. Еще недавно они считали, что радикальные изменения климата могли бы произойти только при существенном увеличении или уменьшении притока энергии к земной поверхности. Теперь уже установлено, что уменьшения притока энергии всего на 2 процента от существующей «нормы» было бы достаточно для того, чтобы вызвать полное оледенение всей Земли.
А единожды изменив климат, вызвав всемирное оледенение или, наоборот, уничтожив полярные льды, будет уже очень трудно восстановить нарушенное равновесие в природе.
В прошлом Земля пережила немало резких климатических колебаний. Наступали и проходили периоды оледенений, каждый из них длился десятки тысяч лет — колебания климата происходили очень медленно. Теперь же возможны изменения в климате, которые произойдут в течение нескольких десятилетий. А это может существенно сказаться не только на нашем привычном быте, но и на всей хозяйственной деятельности. Вот почему уже теперь, когда мы еще не ощущаем сколько-нибудь реально последствий воздействия цивилизации на климатические условия, географы и геофизики серьезно обсуждают проблемы возможных изменений климата Земли под воздействием человека.
И тут мы переходим к еще одной группе вопросов, которыми заняты и советские, и зарубежные специалисты в области геофизики.
Чтобы с уверенностью говорить о возможных последствиях воздействия человека на климат нашей планеты, следует в первую очередь уточнить наши знания о том, какие условия определяют климатические особенности различных зон. Но допустим, сложные механизмы погоды изучены, мы уже знаем все условия, от которых зависит климат того или иного района. Значит ли это, что последствия любого технического проекта, вроде поворота сибирских рек или сооружения на них огромных водохранилищ, могут быть предсказаны с абсолютной точностью? К сожалению, еще нет. Механизмы погоды, условия, определяющие климатические особенности различных зон, настолько сложны, что последствия их изменений возможно учесть только в результате целых серий длительных и трудных исследований. Тут требуются применение методов систематического анализа, создание специальных моделей, позволяющих воспроизводить различные сочетания воздействующих на климат природных и не природных факторов, методы математических расчетов, позволяющие составлять программы исследований с помощью электронно-вычислительных машин. Короче говоря, коль скоро мы «выросли» до такой степени, что собираемся воздействовать на климат, то необходимо заранее подготовиться к этому с полным сознанием ответственности за все возможные последствия.
В принципе эти последствия могут оказаться очень нежелательными, весьма затрудняющими нашу деятельность, наш быт. Но никакой фатальной неизбежности тут нет, никакой злой рок не тяготеет над человечеством. И если мы в понятие «изменение окружающей среды» включаем теперь представление об изменениях климата в масштабах больших районов, континентов, то это в конечном счете означает лишь то, что могущество человека возрастает стремительно, что его научные достижения начинают воплощаться в технические устройства и сооружения гораздо быстрее, чем раньше, что научно-техническая революция коренным образом изменяет прежние представления о соотношении масштабов природных явлений и влиянии на них человеческой деятельности.
Подчеркнем еще раз: хозяйственная деятельность человека может оказать сильное влияние на климатические условия, вызвав необратимые и нежелательные процессы. Однако сама хозяйственная деятельность, во всяком случае в социалистическом обществе, поддается планированию, ее можно регулировать, ею можно управлять. Поэтому в нашей власти предотвратить нежелательные изменения климата. Но чтобы суметь это сделать, необходимо знать, как именно могут повлиять на климат различные стороны хозяйственной деятельности человека.
Как видим, это обязывает нас уделять достаточное внимание изучению механизмов, управляющих природными явлениями, повышает роль науки в жизни человеческого общества, приводит к тому, что научное мировоззрение становится обязательным условием технического и социального прогресса. С этой точки зрения следует, на наш взгляд, оценивать сейчас не только роль таких областей науки, как математика, физика, геофизика — вообще точные науки, но и значение наук общественных, в частности марксистско-ленинской философии. Недаром у нас теперь все чаще проходят плодотворные встречи философов и естественников, а сама философия все в большей степени начинает заниматься решением кардинальных социальных и естественнонаучных проблем.