Разумная жизнь во Вселенной — страница 6 из 9


СОЛНЕЧНАЯ СИСТЕМА

ПЛАНЕТЫ СОЛНЕЧНОЙ СИСТЕМЫ

Мы находимся на задворках нашей Галактики. Из нашего медвежьего угла очень трудно «пощупать» далекие планеты. Исследовать планеты другими, косвенными методами очень сложно. Они малы и находятся далеко. Поэтому на примере планет нашей системы проиллюстрируем, насколько сильно могут меняться условия, в которых мы ищем жизнь. Эти условия мы, прежде всего, будем рассматривать с точки зрения жизни. Хотя мы уже знаем, что на наших планетах полноценной жизни нет, проанализируем физико-химические условия на планетах Солнечной системы, с тем чтобы дать представление о том, насколько сильно эти условия могут меняться. Это в одной планетной системе. Что же можно ожидать от планет, которые находятся ближе к центру Галактики? Во Вселенной все может быть. Схема Солнечной планетной системы, расположение планет и их удаленность от центральной звезды — Солнца показаны на рисунке 9. Вся картина разделена на две части (левую и правую). В каждой части свой масштаб. Внизу рисунка показаны расстояния планет от Солнца. Масштаб — логарифмический. Это когда изменение в десять раз занимает одну десятую часть изменения в 100 раз. Но для удобства самая нижняя линия показывает удаление от Солнца в километрах, а линия выше — в астрономических единицах. Астрономическая единица — это расстояние от Земли до Солнца. Оно равно 149, 6 миллиона километров. В этих единицах в нижней части рисунка показаны удаления планет от Солнца (средние их удаления).

Все планеты движутся по эллиптическим орбитам. Эллипс — это овал. Он, в отличие от окружности, имеет два центра. Любая точка на эллипсе так расположена, что сумма ее расстояний от этих двух центров остается всегда постоянной.

Если эти два центра все больше и больше растягивать в разные стороны, то эллипс становится все более вытянутым. Если же, наоборот, центры эллипса сближать и затем вообще совместить друг с другом, то в конце концов получится окружность с одним центром и одним радиусом.

Обратите внимание, что на рисунке 9 Солнце находится не в центре окружностей. И вообще это не окружности. Это эллипсы. Солнце же находится в одном из двух центров эллипса. Два центра эллипса называют фокусами. Удаление одного центра (фокуса) эллипса от другого называется эксцентриситетом. Чем больше эксцентриситет, тем орбита планеты более вытянута. Окружность обладает одним радиусом. Эллипс обладает двумя полуосями (длиной и шириной). Очень удобно использовать произведение эксцентриситета эллипса на величину большей полуоси. При этом получается расстояние, на которое данная планета удаляется от Солнца в своей наиболее далекой точке — афелии или же приближается к Солнцу в своей самой ближней точке — перигелии. Эти расстояния получаются не в километрах и не в астрономических единицах, а в единицах, которые равны среднему расстоянию планеты от Солнца. Самым большим эксцентриситетом обладают планеты Меркурий и Плутон. Их эксцентриситеты равны 0,207 и 0,253 соответственно. Самыми малыми эксцентриситетами обладают Венера и Нептун. Они равны 0,0068 и 0,0087 соответственно.

Уточним, что большие полуоси орбит планет — это средние расстояния планет от Солнца. Они для Меркурия, Венеры, Земли и Марса очень сильно отличаются от таковых для других, более удаленных от Солнца планет, планет-гигантов. Это Юпитер, Сатурн, Уран, Нептун. Сюда же надо отнести и планету Плутон.

Основные данные о планетах Солнечной системы приведены в таблице 1. Сравнительные характеристики планет следующие. Все они движутся вокруг Солнца в одном направлении, а именно — против часовой стрелки. Это если смотреть с северного полюса мира. Плоскость орбиты Земли называется эклиптикой. Плоскости орбит других планет несколько наклонены к плоскости орбиты Земли, то есть к плоскости эклиптики. Больше всего этот наклон у плоскости орбиты Меркурия (наклон составляет 7 °) и у плоскости орбиты Плутона (наклон составляет 17°). Для всех остальных планет этот наклон меньше 3,4°.

При движении вокруг Солнца планеты оказываются в различном расположении друг относительно друга. Если какая-либо планета находится против другой планеты и обе они находятся на линии, которая проходит через Солнце, то говорят о противостоянии планет. В том случае, когда планета внешняя по отношению к орбите Земли, это просто противостояние. Если же планета внутренняя относительно Земли, то говорят о нижнем соединении планет. Это может происходить с Венерой и Меркурием. Если планеты расположены за Солнцем, то такое же положение называют верхним соединением.





Смена времен года определяется углом наклонения плоскости экватора планеты относительно плоскости ее орбиты. Можно с таким же успехом оперировать полярной осью, то есть осью, вокруг которой планета вращается. У Меркурия, Венеры и Юпитера ось вращения (полярная ось) практически перпендикулярна плоскости их орбит. Поэтому там нет сезонов, нет смены времен года. Весьма существенный угол наклонения плоскости экватора к плоскости орбиты имеют Марс и Земля. Он составляет около 25°. Поэтому на этих планетах сезонные изменения очень выражены. У Урана наблюдается весьма странная картина. Он, как упавшее веретено, вращается практически в плоскости своей орбиты. Результаты этого налицо. Полярная ночь длится полгода. А это не меньше не больше, чем 42 земных года. Такая полярная ночь наступает в одном полушарии Урана, а затем — в другом, и все повторяется. Полярная ночь, в отличие от Земли, на Уране охватывает все полушарие. То есть полярный круг совпадает с экватором. 42 земных года на Уране темно и холодно сразу во всем полушарии, северном или южном. Зато в полярный день, который тоже длится 42 земных года, Солнце непрерывно находится в зените. Нет ни восходов, ни закатов, и вообще никакого движения Солнца на небосводе.

Внутренние планеты — Меркурий, Венера, Земля и Марс составляют одну группу планет. И дело не в том, что они находятся ближе друг к другу. Главное их общее свойство то, что это небольшие планеты с высокой средней плотностью, которая достигает 5,5 г/см3. Это в пять с половиной раз тяжелее воды. Все эти планеты расположены очень близко к Солнцу (от 0,39 до 1,52 астрономической единицы).

В группу планет-гигантов входят Юпитер, Сатурн, Уран и Нептун. Эти планеты обладают огромными массами. Но средняя их плотность невелика. Она близка к плотности воды(1 г/см3). Кроме того, планеты-гиганты вращаются очень быстро (сутки составляют 1 — 17 часов). Располагаются они на расстояниях от 5,20 до 30,07 астрономической единицы. Плутон расположен еще дальше. Его среднее расстояние от Солнца составляет 39,52 астрономической величины. Но орбита Плутона очень вытянута. Поэтому реальные расстояния его от Солнца сильно отличаются от среднего расстояния. Так, Плутон при своем движении иногда заходит внутрь орбиты Нептуна.

Периоды обращения планет вокруг Солнца (то есть длительности года) различны. У Меркурия это всего 88 суток (земных суток), а у Плутона год длится 249 земных лет. За последние десятилетия проводились исследования почти всех планет (кроме Плутона) с помощью космических аппаратов.

МЕРКУРИЙ

Меркурий может наблюдать каждый. Сразу после захода Солнца или же на востоке перед его восходом видна яркая планета. По блеску она только немного уступает Венере. Это и есть Меркурий. Но наблюдать его в это время можно недолго, около полутора часов, не более. Другое дело — в телескоп. Но и в телескоп никаких деталей на Меркурии вы не увидите. Вплоть до недавних исследований Меркурия с помощью современных экспериментальных средств считали, что Меркурий всегда обращен к Солнцу одной и той же стороной, поэтому там, под Солнцем очень жарко. Моря на Меркурии изображались состоящими из расплавленных металлов. Берега рисовались похожими на лунный ландшафт.

Важные данные о Меркурии были получены после 1974 года. Меркурий обращается вокруг Солнца по сильно вытянутой эллиптической орбите. Она наклонена к плоскости эклиптики, то есть к плоскости, в которой обращается Земля, на 7°. Средняя удаленность Меркурия от Солнца составляет 0,39 астрономической единицы. Это равно 58 миллионам километров. В перигелии удаленность составляет 0,31, а в афелии — 0,47 астрономической единицы. По орбите Меркурий движется со скоростью 48 км/с. Но эта скорость меняется, подчиняясь законам Кеплера. Чем дальше уходит планета от центров эллипса, тем движение ее быстрее. Так, Меркурий в максимуме большого эксцентриситета движется со скоростью 54 км/с. Эта скорость вдвое больше скорости движения Земли. Это значительно усложняет посылку на Меркурий космических аппаратов. Период обращения Меркурия вокруг Солнца (сидерический) составляет 88 земных суток.




Рис. 10. Схема связи периодов вращения и орбитального движения Меркурия. Благодаря приливным воздействиям Солнца Меркурий захвачен в «резонансную ловушку»: период его обращения вокруг Солнца относится к периоду вращения как 3/2. Иными словами, Меркурий делает три оборота вокруг своей оси за два меркурианских года, что легко видеть по положению светлого пятна на схеме



Орбита Меркурия показана на рисунке 10. Когда Меркурий проходит перигелий (тогда он удален от Солнца на 0,31 а. е.), он поочередно бывает обращен к Солнцу то одной, то другой стороной. Это очень своеобразное движение. Было бы правильным говорить, что один полный солнечный цикл на Меркурии составляет два меркурианских года. Полный оборот вокруг своей оси Меркурий завершает за две трети своего года. Любопытным свойством движения Меркурия является то, что к тому моменту, когда Меркурий оказывается в нижнем соединении (на линии Земля — Солнце), он всегда занимает одно и то же положение относительно звезд. Продолжительность солнечных суток на Меркурии равна 176 земным суткам.

Очень необычным является движение Солнца, которое наблюдается (может наблюдаться) с поверхности планеты. Схема его показана на рисунке 11. В продолжение суток можно видеть три восхода и три захода Солнца. Но напомним, что солнечные сутки длятся там в 176 раз дольше, чем на Земле. Зрелище очень необычное: можно наблюдать с Меркурия, как Солнце останавливается и даже возвращается назад. В разных зонах планеты картина разная. Так, в некоторых зонах заходы и восходы Солнца наблюдаются дважды за одни сутки (как на востоке, так и на западе).



Рис. 11. Видимое движение Солнца по небу Меркурия, наблюдаемое с точек, расположенных на меридианах 0 и 180°. На этих долготах можно видеть три восхода и три захода за одни солнечные сутки, которые длиннее земных в 176 раз




Рис. 12. Район вблизи южного полюса Меркурия с межкратерными равнинами. Диаметр кратера (вверху посередине) около 65 км. Снимок NASA


Меркурий хотя и маленькая планета, но достаточно тяжелая. Средняя ее плотность примерно такая же, как у Земли (5,44 г/см3).

Рельеф местности Меркурия очень суровый. Часть поверхности планеты изрыта кратерами. На фоне старых кратеров видны следы новых, более мелких. Размеры падающих небесных тел с течением времени уменьшались. На дне некоторых кратеров просматриваются следы извержения лавы, которая, естественно, затвердела. Примерно также выглядит поверхность Луны.

В ряде районов Меркурия кратеров нет. Такая поверхность видна на рисунке 12. Показанный район расположен вблизи южного полюса Меркурия. Ученые считают, что океана жидкой лавы на поверхности Меркурия никогда не было.

Достопримечательностью поверхности Меркурия являются эскарты. Это уступы высотой 2–3 метра. Они разделяют два района, которые, впрочем, почти ничем не различаются. Но эти уступы (обрывы) очень протяженные. Их длина достигает сотен и даже тысяч километров. У каждого из этих уступов имеется свое собственное имя. Эти уступы образовались тогда, когда происходило сжатие Меркурия. Поэтому произошли сдвиги, и отдельные участки его коры наползли на другие. Горы на Меркурии имеют высоту 2–4 километра. Только Скалистые горы на Меркурии возвышаются на 5,8 километра. На сегодняшний день все специалисты сходятся на том, что подавляющая часть рельефа Меркурия, состоящая из кратеров, образована в результате ударов о поверхность планеты небесных тел. Эти удары сопровождались взрывами. Это справедливо не только доля Меркурия, но и для Луны и Марса.

Одним из самых интересных районов Меркурия ученые считают Равнину Жары или Зноя. Она представляет собой бассейн в виде круга диаметром 1300 километров. Этот бассейн по периферии окружают концентрические кольцевые валы. Их несколько (4–5). Некоторые из них имеют высоты в 2 километра. Это показано на рисунке 13. Полагают, что на этом месте остался след от удара гигантского метеоритного тела. Размеры этого тела должны были быть сравнимыми с размерами небольшой планеты. Возможно, это столкновение произошло 3, 9 миллиарда лет назад. Об этом судят по относительно малому количеству кратеров в центральных частях Равнины Жары. Здесь сравнительно ровная поверхность изрезана системой трещин. Это показано на рисунке 14. Видимо, удар при столкновении небесного тела с Меркурием был настолько сильным, что кора планеты в этом месте была пробита очень глубоко. Через образовавшуюся щель в коре и мантии вырвались на поверхность потоки лавы. Когда лава застыла, она образовала сетку трещин, а также концентрические кольцевые валы. Кратеры на поверхности Меркурия хорошо сохранились. Поэтому можно полагать, что основные этапы образования кратеров прошли раньше, до образования Равнины Жары.




Рис. 13. Равнина Жары. На снимке видны вся центральная часть Равнины Жары (диаметр 1300 км) и несколько кольцевых валов


Для проблемы жизни очень важной является температура атмосферы планеты. Она зависит от той энергии, которую планета получает от Солнца. Напомним, что Земля получает от Солнца 1,37 кВт/м2. Площадка в один квадратный метр должна быть перпендикулярна лучам Солнца. Так вот,




Рис. 14. Поверхность Меркурия в районе Равнины Жары. Различаются трещины шириной от 0,5 до 8 км. Наилучшее разрешение до 50 м. Снимок NASA


на квадратный метр Меркурия приходится в среднем 9,15 кВт. В перигелии эта цифра достигает 11 кВт/м2. Это в четыре раза больше, чем для Земли. Меркурий экономит энергию и тем, что его поверхность темная. Поэтому только 12–18 % падающего света отражается в космическое пространство. Все остальное солнечное тепло поглощается и идет на нагрев. На нагрев идет примерно 8 кВт на площадке в один квадратный метр. День на Меркурии очень длинный, и температура успевает подниматься до высоких значений. Она достигает 620 К (кельвинов). В перигелии температура поднимается еще выше. В районе Равнины Жары она достигает 690 К. В афелии она ниже — 560 К. К счастью, поверхностный слой планеты сильно измельчен и служит хорошим теплоизолятором. Поэтому тепло не проникает глубоко. Так, на глубине нескольких десятков сантиметров температура неизменная и поддерживается на уровне 345–365 К. Из-за низкой теплопроводности, сразу после захода Солнца поверхность Меркурия быстро остывает. Буквально спустя два часа она падает до 130 К, а ночью она составляет 90 К.

Любопытно, что в полярных шапках Меркурия были обнаружены гигантские отложения льдов. С помощью наземной радиолокации в начале 1990-х годов были выявлены в полярных шапках многочисленные пятна размером от 50 до 150 километров. Анализ отражаемых радиосигналов позволяет заключить, что отражение произошло ото льда. Такой вывод можно сделать из анализа характера отраженных радиоимпульсов (для них характерна деполяризация). Полагают, что лед покрыт тонким слоем вещества (специалисты его называют реголитом), которое сильно раздроблено. Поэтому оно является идеальным теплоизолятором. Собственно, поэтому льды и сохранились. Они оказались в своего рода термосе. Очень важную роль в сохранении льдов сыграло и то, что положение оси планеты (вокруг которой она вращается) является стабильным. Поэтому солнечные лучи практически никогда не проникают в не очень глубокие кратеры в полярных шапках (выше широт 82–84°). Температура здесь не превышает 60–62 К. Естественно, что лед почти законсервирован. Изменение температуры на поверхности Меркурия в течение солнечных суток показано на рисунке 15.



Рис. 15. Характер изменения температуры поверхности Меркурия в течение солнечных суток (на экваторе)


Физико-химические условия на планете зависят от ее внутреннего строения. От него зависят источники тепла, теплообмен и общий баланс тепла. На рисунке 16 приведена схема внутреннего строения Меркурия. Рядом дана схема для Земли. У Меркурия имеется массивное железное ядро, которое больше, чем ядро Земли. Ядро Меркурия занимает примерно половину объема планеты. Над ядром расположена силикатная оболочка. Ее толщина составляет 600 километров.





Рис. 16. Схема внутреннего строения Меркурия. Радиус металлического ядра достигает 74 % радиуса планеты. На рисунке показана также упрощенная схема строения Земли


Меркурий — планета легкая. Поэтому свою атмосферу она не сумела удержать. Но исследователи говорят о некоем подобии атмосферы. Но она слишком разреженна, как самые верхние слои атмосферы Земли, на высотах 1000 километров и больше. Это экзосфера Земли. Поэтому атмосферу Меркурия называют экзосферой. Меркурий терял свою атмосферу еще и потому, что на дневной стороне его температура еще высокая. Чем выше температура газа, тем больше скорость движения частиц газа, тем легче им вылететь за пределы зоны действия сил притяжения планеты и покинуть ее навсегда, уйдя в космическое пространство. Поэтому первичная атмосфера Меркурием была потеряна. Чем легче газ (элемент), тем легче он убегает. Его меньше всего держит планета. Поэтому первым бежит водород. Первым в смысле эффективности, количества убежавшего газа. Вторым — гелий. И так далее. Кстати, одной из основных составляющих нынешней атмосферы Меркурия является именно гелий. Он приходит непосредственно от Солнца. Чистое совпадение в том, что гелий означает «солнечный». Просто этот элемент впервые был открыт на Солнце. Атмосфера Меркурия мало напоминает атмосферу Земли. Атмосферное давление у поверхности Меркурия в 500 миллиардов раз меньше, чем у поверхности Земли. Это такой глубочайший вакуум, которого в наших лабораториях мы не достигнем никогда. Собственно, атмосфера Меркурия — это что-то вроде перевалочного пункта. Сюда непрерывно приносятся частицы гелия от Солнца, но они столь же стремительно и покидают эти места. Это чем-то напоминает текущую реку. Правда, смена атомов гелия происходит не так уж и быстро. Каждый атом гелия живет на Меркурии примерно 200 дней. А затем снова в путь! Его место займет другой атом гелия, который принесет от Солнца солнечный ветер. Атмосфера больше там, где холоднее, то есть на ночной стороне Меркурия. В атмосфере Меркурия имеется и водород. Но его меньше, чем гелия, примерно в 50 раз. Других газов там не обнаружено, хотя их наличие нельзя исключить. Специалисты, которые изучают атмосферу и ионосферу Земли, имеют дело с тысячами самых различных химических реакций. Это целая отрасль науки, и не одна. На Меркурии они остались бы без работы — там, в атмосфере Меркурия, нет химических реакций. Чтобы одна частица вступила в реакцию с другой, им надо встретиться. А там, как в пустыне, частицы газов практически не встречаются. Слишком их мало, и они носятся как пушечные ядра, не встречая друг друга. Это идеал одиночества. Поэтому вряд ли стоит говорить об атмосфере Меркурия. Можно просто считать, что ее нет. Как и у Луны. В атмосфере Меркурия были обнаружены и пары щелочных металлов, натрия и калия, в соотношении 25:1. Их, конечно, ничтожно мало. Полагают, что они являются результатом испарения щелочных металлов из коры планеты, примерно из глубины до 10 километров. Над Равниной Жары этих паров было зафиксировано больше, чем в других местах. Специалисты считают, что источником этих паров могут быть и вулканы (фурамолы), которые все же есть и на Меркурии.

ВЕНЕРА

«Здесь нет привычной голубизны земного неба. Высоко над поверхностью Венеры раскинут огромный оранжевый купол облаков. Самые нижние его слои находятся на высоте 48–49 километров — так высоко, что с поверхности не видны какие-либо подробности их структуры, за исключением, может быть, тонких полос (вроде земных перистых облаков), расположенных чуть ниже 48 километров. Когда местное время приближается к 6 часам и наступает утро, рассветные лучи Солнца озаряют одну половину облачного купола и слегка подсвечивают другую. Наверное, это очень красиво, если смотреть с поверхности планеты. Облака становятся все светлее, яркость небосклона очень медленно выравнивается. На Земле проходит день, другой. Через 5 земных суток местное время на Венере прибавляется на один час. Через 10 земных суток — на два часа. Солнечные сутки на Венере очень длинны. Весь год планеты состоит из двух (точнее 1,91) солнечных венерианских суток. Поэтому так долго длится рассвет. Однако восход Солнца — понятие, не известное природе Венеры. Прямой луч Солнца неспособен пробиться сквозь двадцатикилометровую толщу сернокислотного тумана, который мы по традиции называем облаками Венеры. Пока наблюдения не показали ни одного, даже самого маленького, сквозного разрыва в облаках…».

Это отрывок из научной книги о Венере.

Венера — это вторая по удаленности от Солнца планета (рис, 17). Иногда ее называют двойником Земли. Своими размерами и массой она напоминает Землю. Продолжительность года на Венере составляет 224,7 земных суток. Орбита Венеры почти круговая. Среднее расстояние Венеры от Солнца составляет 108,1 миллиона километров. Наклон орбиты Венеры к плоскости эклиптики равен 3,5°. Из всех планет Венера находится ближе всего к Земле (40 миллионов километров). Это расстояние свет проходит за 2 минуты 12 секунд. Спутников у Венеры нет. Масса Венеры составляет 0, 815 массы Земли. Радиус Венеры равен 6052 километрам (радиус Земли — 6371 километр). Средняя плотность Венеры только незначительно меньше средней плотности Земли.




Рис. 17. Вид полушария Венеры с долготой центрального меридиана 180°. Снимок NASA


Атмосферу у Венеры обнаружил еще Ломоносов. Измерения были просты, а логика безупречна. Когда Венера оказывается на линии Земля — Солнце, то можно видеть, как она пересекает солнечный диск. Если солнечным лучам по пути к нам приходится проходить через атмосферу Венеры, то они искривляются. Если атмосферы у Венеры нет, то солнечные лучи искривляться не будут. Ломоносов установил, что они искривляются. Значит, у Венеры есть атмосфера. Схема этого эксперимента показана на рисунке 18. Около 96,5 % атмосферы Венеры составляет углекислый газ. Около 3,5 % составляет азот N2. Облака (туман) занимают высоты от 49 до 75 километров. Под облаками находится огромный океан из углекислого газа. Он раскален. Плотность газа очень велика. Она больше плотности



Рис. 18. Схема явления, которое М. В. Ломоносов наблюдал в 1761 году. При прохождении Венеры по диску Солнца, что случается очень редко, вокруг выступающего края планеты появляется тонкий светлый ободок


атмосферного газа на Земле в 50 раз. Показатели относятся к поверхностям планет. Атмосферный газ на Венере (на ее поверхности) по плотности только в 14 раз меньше воды. Чем выше, тем плотность газа меньше. С высотой уменьшается и температура атмосферного газа. Это показано на рисунке 19. Так, на высоте 30 километров давление равно 9,4 бар, плотность 10 кг/м3 и температура равна 222 °C. На высоте 60 километров давление падает до 0,09 бар, плотность падает до 0,2 кг/м3, а температура уходит в минус (–30 °C). Из-за высокого молекулярного веса атмосферного газа выше 150 километров атмосфера Венеры разряжена больше, чем атмосфера Земли на таких же высотах. Выше этого уровня преобладают легкие частицы — атмосферный кислород и углекислый газ. А еще выше (выше 320 километров) резко увеличивается относительное содержание гелия и водорода. Легкие составляющие атмосферного газа — угарный газ, кислород и водород появляются как результат распада (диссоциации) молекул углекислого газа и водяного пара. Эта диссоциация происходит под давлением жесткого (высокоэнергичного) ультрафиолетового излучения Солнца в стратосфере Венеры. Атмосфера Венеры делится на разные высотные слои — тропосферу, стратосферу, мезосферу и термосферу (криосферу).




Рис. 19 а. Зависимость температуры и давления от высоты в атмосфере. Вверху показана дневная и ночная концентрации электронов в ионосфере




Рис. 19 б. Схема положения основных этажей атмосферы Венеры


Выше 700 километров начинается корона Венеры, состоящая только из водорода. Она простирается до 1000 километров и плавно переходит в межпланетную среду. На высотах короны температура практически не меняется с высотой. Она, конечно, зависит от времени суток, то есть от того количества тепла, которое поступает в атмосферу от Солнца. Это значит, что температуры днем выше, чем ночью. Так, выше 160 километров температура днем (в подсолнечной точке) близка к 300 К при минимальной солнечной активности и 450 К — при максимальной. Ночью температура падает до 100 К.

В атмосфере Венеры содержится не только углекислый газ и азот, но и целый ряд малых составляющих (малых — по количеству). Какие они и сколько их, показано на рисунке 20. На поверхности Венеры и в ее атмосфере очень мало воды, но более одной сотой процента. Пока не удается объяснить, почему это так.



Рис. 20. Состав атмосферы Венеры. Справа — малые составляющие


Об облачном слое Венеры можно судить по фотографиям. Напомним, что Венера вращается в противоположную сторону относительно направления вращения Земли. Над медленно вращающейся поверхностью планеты с огромной скоростью (около 100 м/с) вращается атмосфера на высоте облаков. Это средняя атмосфера. На фотографиях (рисунок 21) следы этого вращения атмосферы прослеживаются как спиральные полосы, которые спускаются от полюсов к экватору. Приведенные снимки сделаны в ультрафиолетовых лучах. Что гонит атмосферный газ — до конца не ясно до сих пор. Выше облаков скорость вращательного движения облаков резко падает. Она максимальна на высотах 16–32 километров.




Рис. 21. Снимки поверхности облачного слоя Венеры, сделанные в ультрафиолетовых лучах. Спиральные полосы, сходящиеся в центре, образуют V-образную фигуру, наблюдавшуюся с Земли. На рисунке приведены 4 последовательных изображения облачного слоя Венеры, которые показывают периодичность его движения. Интервалы между снимками 23, 67 и 53 часа. Снимки сделаны с помощью аппаратуры спутника «Пионер — Венера». Снимок NASA


Ниже 10 километров скорость ветра составляет только единицы метров в секунду. На поверхности Венеры скорость ветра не более 1 м/с. Но этот ветер валит с ног. Ведь атмосфера там очень плотная. Ниже облачного слоя атмосфера Венеры представляет собой чистую, незамутненную газовую среду. В северной полярной шапке Венеры наблюдается полярный вихрь. Здесь атмосферный газ опускается вниз. При этом он увлекает за собой облачный слой. Поэтому здесь облачный слой ниже, чем в средних широтах. Период вращения полярного вихря составляет 2,7 суток. Движение атмосферного газа на Венере немного проще, чем на Земле, где циклоны сменяют антициклоны и движения не всегда легко предсказать. На Венере все движения атмосферы направлены на запад, и только на запад. При этом вращательном движении атмосферный газ значительно обгоняет вращение самой планеты.

Облака Венеры имеют слоистую структуру. На высотах от 57 до 75 километров располагается самый верхний ярус облаков. Его составляют мельчайшие капли 80 %-ой серной кислоты. В каждом кубическом сантиметре на высоте 65–67 километров таких частиц содержится около 300. В среднем слое облаков плотность частиц, а точнее капель, растет. Наряду с каплями имеются и твердые частицы — мелкие кристаллики (видимо, сера кристаллической структуры). В нижнем слое на высотах от 48 до 51 километра наблюдается наибольшая концентрация как крупных, так и мелких частиц. Их здесь примерно 400 частиц в каждом кубическом сантиметре. Ниже 48 километров их концентрация резко падает. На высоте 31–32 километров частицы полностью исчезают.

Мельчайшие сернокислые капли в атмосфере Венеры порождает сероокись углерода СОS. Она была обнаружена, хотя и в небольших количествах. Сернистый газ SO2 в условиях Венеры является источником серной кислоты. Он под действием интенсивного ультрафиолетового излучения Солнца в атмосфере Венеры выше облаков окисляется кислородом. В результате образуется серный ангидрид SO3. Сам же кислород образуется в результате фотолиза углекислого газа СО2.

Говоря проще, солнечное излучение разрывает молекулу СО2 и высвобождает кислород. Серный ангидрид SO3 незамедлительно взаимодействует с водяным паром и дает серную кислоту. Ее немного, но вполне достаточно для того, чтобы образовать очень плотный слой облаков (туманы). Специалисты даже разработали сценарий образования облаков. События хронологически развиваются так:

«Процесс образования сернокислого тумана очень медленный. За весь венерианский день образуется всего 25 капелек диаметром 1,5мкм (микрон) на 1 см3. Такое количество частиц уже хорошо объясняет наблюдаемое явление. Все может выглядеть так. Утром стратосфера прозрачна, но к полудню в ней появляется уже довольно много частиц. Так как температура на их уровне ниже, чем на уровне излучающих облаков, идущее снизу тепловое излучение заметно ослабляется этой средой. Наибольшая концентрация частиц достигается к 16 условным часам, что и приводит к появлению минимума температуры. Ночью, когда «выключен» основной механизм этого процесса, небо снова становится прозрачным, и яркостная температура достигает максимального значения».

Частицы облаков постепенно осаждаются, объединяясь и укрупняясь. Серная кислота при высокой температуре нижних слоев атмосферы Венеры разрушается. При этом угарный газ реагирует с серным ангидридом. Он разрушает его. В результате образуются углекислый и сернистый газ. На более низких уровнях остатки угарного газа отнимают у части сернистого газа последние атомы кислорода, а в атмосферу выделяется сера в газообразном состоянии.

То, что в атмосфере Венеры присутствуют серная, соляная и плавиковая кислоты, обусловлено высокой температурой поверхности планеты. Серная кислота в атмосферу Венеры попадает из вулканических газов, где ее много. Много ее и просто на поверхности планеты.

У специалистов вызывает недоумение, почему на Венере так мало воды, хотя по многим показателям (состав, масса, размеры) Венера очень похожа на Землю. Конечно, высокие температуры на Венере делают свое дело. Вся вода в результате уходила в атмосферу, выкипала. Одновременно водород уходил в космическое пространство.

Поверхность Венеры была исследована с помощью космических аппаратов. Были получены фотографии поверхности Венеры. Две из них показаны на рисунках 22 и 23. На первом из этих рисунков видны камни. Они разбросаны по всему полю снимка. Камни разных размеров — от мелких до метровых каменных глыб. И так до самого горизонта. Камни рассыпаны на рыхлом грунте. Снимающий прибор находился у подножия венерианской горы, на склоне в 30°. Горы на Венере достигают высоты в несколько километров.

Грунт Венеры содержит 0,3 % калия, 0,6·10–4 % урана (шесть стотысячных процента) и 3,6·10–4 % бария. Примерно половину грунта составляет кремнезем SiO3. Космические аппараты взяли пробы грунта Венеры. Анализ проб показал наличие элементов с атомными номерами от магния до железа. Были отождествлены следующие соединения: SiO2, Al2O3, MgO, CaO, FeO, K2O, MnO, TiO2, SO3, Cl.

Что касается рельефа Венеры, то он характеризуется равнинными районами, горами и низменностями. Горные районы занимают небольшую площадь. Это земля Иштар, земля Афродиты и области Бета. Все горные районы занимают 8 % всей поверхности Венеры. Низменности занимают 27 % всей поверхности. Это низменность Аталанта (большая равнина диаметром 2500 километров, углубленная на 2 километра относительно среднего уровня) и другие низменности. Остальная поверхность планеты (почти две трети) находится на промежуточных высотах. Это волнистые равнины.

Земля Афродиты (горная местность) расположена в экваториальной области. Она простирается на 18 тысяч километров в долготном секторе 60 — 120°. По широте она занимает пояс от 10° северной широты до 45° южной широты. Это более 5000 километров. По площади это 41 миллион квадратных километров. Это примерно площадь нашей Африки.

Вид полушария Венеры с долготой центрального меридиана 180° показан на рисунке 17. Это восточная часть земли Афродиты. Здесь имеется большое число кольцевых образований, глубина которых составляет всего сотни метров.




Рис. 22. 22 октября 1975 г. в 7 часов утра по московскому времени с поверхности Венеры впервые было передано изображение. На склоне разбросаны многочисленные каменные глыбы. Эта каменистая осыпь, где опустилась «Вене-ра–9», расположена в 2200 км от равнины, показанной на рис. 23. Большие камни в левой части изображения, напоминающие раковины, имеют, по-видимому, слоистую структуру. В левом верхнем углу снимка видны малоконтрастные пятна. Вероятно, это следующий склон горы




Рис. 23. Утром 25 октября 1975 г. «Венера–10» опустилась на плоскую каменную плиту на невысоком обширном плоскогорье экваториального района планеты. В нижней части снимка — часть аппарата, выше видны крышка телефотометра и прибор для измерения плотности грунта. Каменные плиты разбросаны по всему полю снимка. Поверхность плит в левой части снимка светлее, чем в правой. Вероятно, небо слева было более светлым, чем справа. Широкая темная полоса в центральной части — аппаратурный дефект, связанный с расположением здесь светлой крышки телефотометра




На южной окраине земли Афродиты имеется каньон Артемиды. Это огромный кратер-фантома, имеющий сравнительно правильную форму. Вокруг него имеется сильно разрушенный двойной вал. В центре в радиолучах регистрируется яркое пятно. Диаметр этого образования 2600 километров. Обширная равнина Седны показана на рисунке 24. Она образовалась в результате действия вулканов. Полагают, что она похожа на базальтовые равнины Луны и Марса. Базальты действительно здесь обнаружены. На рисунке 25 показаны своеобразные острова, которые остались от рельефа предшествующей эпохи.



Рис. 25. В некоторых районах над сравнительно ровной поверхностью равнины Седны выступают останцы — своеобразные острова, оставшиеся от рельефа предшествующей эпохи. Из работ А. Базилевского, О. Ржиги и др.





Рис. 2 6. В области Лавинии радиолокационной съемкой с аппарата «Магеллан» обнаружены три огромных метеоритных кратера, по-видимому, общего происхождения. Меньшие кратеры в нижней правой части снимка — вулканы размерами от 1 до 12 км. Снимок NASA

Во многих районах Венеры имеются кратеры — результаты ударов метеоритов. Так, в 2000 километров западнее Альфы на равнине Лавинии имеются три больших метеоритных кратера (рисунок 26). Диаметры их 37–50 километров. Видимо, они образовались, когда одно большое метеоритное тело в атмосфере Венеры распалось на три крупных обломка. Они при ударе о поверхность планеты и образовали эти кратеры. Кратеры по поверхности Венеры распределены довольно равномерно. Диаметры их самые разные — от 1,5 до 280 километров. Кратеры могут иметь разное происхождение. Их образуют и вулканы. Примерно полмиллиарда лет назад имело место усиление вулканической активности на Венере. Это значительно обновило ее поверхность. В настоящее время на Венере выбрасывается примерно столько же вещества, что и на Земле. Вулканов на Венере около 1600. 150 из них превышают размеры в 100 км. Большой кратер Изабелла показан на рисунке 27. Наибольшему числу вулканов Венеры присуща форма конусов или куполов, как это показано на рисунке 28. Здесь показано семь совершенно круглых образований, которые имеют проваленную верхушку. Их диаметр в среднем составляет 25 километров. Все они практически вытянуты в линию. Видимо, это трещина, сквозь которую поднималась магма.



Рис. 27. Кратер Изабелла с потоками продуктов извержений. Съемкой с аппарата «Магеллан» в 1991 и 1992 гг. на поверхности Венеры было обнаружено огромное количество подобных свидетельств вулканической деятельности. И хотя пока еще технически трудно установить, что эти извержения происходят и сейчас, было бы очень странно, если бы они почему-то вдруг прекратились в наши дни. Снимок NASA


Любопытно, что в атмосфере Венеры регистрируются грозы. Молнии на Венере гораздо более часты, чем на Земле. Спускаемый на поверхность космический аппарат регистрировал несколько десятков электрических разрядов (молний) в секунду. Но это не обычные молнии, а электрические разряды, которые сопровождают вулканические извержения.



Рис. 28. Семь круглых холмов диаметром около 25 км и высотой немного меньше километра, расположенные в точке 30° ю. ш., 11,8° в. д. на равнине вблизи области Альфа, были определены как очень толстые и медленно растекающиеся лавовые потоки. Подобные образования известны и на Земле. Снимок NASA

МАРС


Поскольку Марс занимает некое среднее положение между Землей и Луной, сравним характеристики Марса с характеристиками этих планет. На рисунке 29 показана сравнительная схема размеров Земли, Марса и Луны, приведены масса и средняя плотность вещества планет.



Рис. 29. Сравнительная схема размеров Земли, Марса и Луны

Любопытно, что размеры каждого последующего небесного тела вдвое меньше размеров предыдущего. Средний диаметр Марса составляет 6775 километров. Масса Марса почти в десять раз меньше массы Земли. Зная массу и средний радиус планеты легко можно определить ускорение свободного падения. Так, у поверхности Марса оно составляет 372 см/с2. Это примерно в три раза меньше земного. Такое же ускорение свободного падения на Меркурии. Как видно на рисунке 29, средняя плотность планеты значительно меньше средней плотности вещества Земли.

Взаимное положение Земли и Марса непрерывно меняется. Каждые 780 дней Марс находится в противостоянии с Землей. Его удаление от Земли (сближение) меняется от минимального (55 млн км) до максимального (102 млн км). Эти сближения называются противостояниями.

В том случае, когда минимальное расстояние между Землей и Марсом не больше 60 миллионов километров, оно называется великим противостоянием. Орбита Марса в большей степени вытянута, чем орбита Земли. Эксцентриситет орбиты-эллипса Марса равен 0,093. Большая полуось орбиты Марса, а по сути, среднее расстояние Марса от Солнца, равна 228 миллионам километров. Величина эксцентриситета указывает на то, что действительное расстояние от Марса до Солнца может быть больше или меньше большой полуоси (то есть среднего расстояния между ними) на 21 миллион километров. На рисунке 30 показаны положения Марса относительно линии осеннего равноденствия во время разных сезонов в северном полушарии. Орбита Земли внутренняя, а орбита Марса внешняя.

Поскольку сильно меняется удаление Марса от Солнца, то меняется и энергия Солнца, которая доходит до Марса. Энергия меняется как куб расстояния. Поэтому энергия, получаемая Марсом от Солнца, в два момента марсианского года отличается в 1,45 раза. На Земле такие изменения составляют всего 7 %. Удаление Земли от Солнца меняется всего на ±2,5 миллиона километров.

Положение Марса весьма оригинально относительно других планет. Во-первых, он обращается вокруг Солнца не так, как все планеты, а в противоположном направлении (против хода часовой стрелки), если смотреть с северного полюса эклиптики. Марсианские сутки почти такие же, как земные (24 часа 39,5 минут). Зато год на Марсе почти вдвое длиннее земного. Он равен 687 юлианским или 669 марсианским солнечным суткам. Плоскость экватора Марса наклонена к плоскости его орбиты на 25°. У Земли этот угол равен 23,5°. Самое любопытное состоит в том, что на Марсе длительность года в северном и южном полушариях разная. Ведь любая планета движется по своей орбите с изменяющейся скоростью. Чем больше орбита вытянута, тем больше эти изменения. Планета обязана двигаться так, чтобы за равные промежутки времени описывать равные площади, образованные куском орбиты и радиусами в один и другой момент. Это установил еще Кеплер, и сейчас эта закономерность называется вторым законом Кеплера. При больших удалениях от Солнца планета может позволить себе двигаться медленно, свою площадь она набирает без труда. Когда она находится близко к Солнцу, ей приходится бежать очень быстро, чтобы набрать нужную площадь (такую же).




Рис. 30. Орбита Марса обладает большим эксцентриситетом. Поэтому при среднем расстоянии 228 млн км планета то удаляется от Солнца дополнительно на 21 млн км, то на столько же приближается к нему. На рисунке изображены положения планеты относительно линии осеннего равноденствия во время разных сезонов в северном полушарии. Показаны противостояния с 1973 по 1999 гг. и взаимные положения Земли и Марса в одном из них (1973 г.)


Вполне естественно, что и температура на Марсе в разные сезоны различается сильно. Так, более короткое лето в южном полушарии примерно на 20 градусов теплее лета в северном полушарии Марса.

Марс находится дальше от Солнца, чем Земля. Поэтому ему достается от Солнца меньше энергии. Примерно вдвое меньше (43 %). Поэтому климатические условия там очень суровые. Так, даже летом температура верхнего слоя грунта в полдень на северном тропике находится ниже нуля (от 0 до 20 °C). Температура в 5 °C характеризует «знойный» марсианский полдень летом. На широте тропика среднегодовая температура составляет -43 °C, а минимальная -90 °C (и ниже).

Температура на планете зависит не только от того, сколько энергии планета получает от Солнца. Она зависит и от того, насколько умело планета расходует эту энергию. Энергия может использоваться на самой планете, а может частично или полностью уйти из планеты в космическое пространство. Реальная ситуация зависит прежде всего от двух вещей: как отражает энергию обратно в космос поверхность планеты и какая атмосфера у планеты. Например, у Земли в атмосфере имеется тепличная пленка в виде озонного слоя, благодаря которой солнечная энергия удерживается у Земли. У Марса дела в этом плане обстоят хуже. Его атмосфера очень разрежена и почти не препятствует уходу энергии вы космос.

Кстати, не так давно, считалось, что на Марсе температура до +15 °C и даже до +30 °C для лета является характерной. Но прямые измерения показали, что она немного ниже, примерно на целых 30 °C. И только в экваториальном поясе Марса благодаря низкой отрицательной способности планеты (поверхность здесь темная) верхний слой грунта после полудня может прогреться до 0 °C или чуть-чуть больше. Но это грунт. А температура атмосферы все равно остается низкой.

Раз атмосфера на Марсе разреженная, то, автоматически, и давление там низкое. Среднее атмосферное давление на поверхности Марса составляет 6,1 мбар. Это в 160 раз меньше, чем на поверхности Земли и в 15 000 раз меньше, чем на Венере. Мы привыкли на Земле все отсчитывать от уровня моря, Мирового океана. Это и вершины гор, и дно океанов. На Марсе такого фиксированного естественного уровня нет. Но он был бы очень удобен. Поэтому специалисты привязали этот условный «нулевой» уровень к атмосферному давлению, равному среднему атмосферному давлению на поверхности Марса (6,1 мбар). От этого уровня идет отсчет и вверх и вниз. Почему именно 6,1 мбар? Потому что это давление соответствует тройной точке фазового состояния воды (лед — жидкость — пар). Это привязка к земным условиям. На Марсе уровень давления в 6,1 мбар — это давление углекислого газа атмосферы. Водяного пара в атмосфере Марса ничтожно мало. Поэтому его частное (парциальное, партио — часть) давление очень мало.

Как и на Земле, чем выше от поверхности Марса, тем холоднее. На определенной высоте замерзает даже углекислый газ атмосферы. Специалисты наблюдают на Марсе голубые облака, особенно в районе полюса и терминатора. Эти облака состоят из кристаллов замерзшей углекислоты. На Марсе бывают и облака из воды (водяного пара), но очень редко. В атмосфере Марса очень мало водяного пара, другими словами, она очень сухая. В самых иссушенных местах на Земле в воздухе водяного пара больше, чем в атмосфере Марса. Больше в сотни раз! В атмосфере Марса концентрация водяного пара по объему близка к 0,05 %. Правда, в определенных местах и в определенных условиях она может быть в десятки раз меньше.

Атмосфера состоит из азота (2,5 %), аргона (1,6 %), кислорода (0,1–0,4 %), угарного газа (0,06 %), а также малого количества благородных газов. Это неон, криптон и ксенон. 95 % всей атмосферы (по объему) — это углекислый газ.




Рис. 31. Район к северу от вала кратерного Моря Аргир. Размеры участка 600x820 км. Снимок «Марса-5»


Следует более подробно поговорить о кратерах Марса, а также о его вулканах. Имеются кратеры двух типов (по происхождению). Одни образовались под действием (в результате ударов) метеоритов, а другие являются результатом деятельности вулканов. Мы не будем описывать все кратеры Марса. Здесь фактического материала очень много, и можно описать кратеры очень подробно. Но это не нужно. Важно уловить саму суть. Все остальное можно найти в соответствующих справочниках. В диаметре кратеры занимают сотни километров. На рисунках 31 и 32 показаны два древних кратера диаметром около 80 км. От них осталось только большое темное дно. Эти два кратера показаны у среза снимка выше его центра. Ниже видны большие кратеры. Поверхность здесь покрыта камнями и грубыми обломками скал. Старые кратеры постепенно сглаживаются. Многие из них сильно разрушены и видны как темный или светлый круг. По сути, кратеры такие же, как и на Луне. У них есть кольцевой вал. У некоторых просматривается центральная горка. Но различие все же имеется. Кратеры на Марсе в среднем вдвое меньше в диаметре, чем на Луне. Это и понятно: меньше сила гравитационного притяжения, меньше удар, а значит, меньше и образовавшаяся воронка. Таким образом, на Марсе кратеры меньше по размерам, чем на Луне. На фото их больше (на единицу площади). Это и понятно, поскольку пояс астероидов (малых планет) ближе к Марсу, чем к Луне. Именно эти небесные тела были источником метеоритной бомбардировки поверхности планет. Это бомбардирование имело место не только на ранней стадии формирования планет, но и в более позднее время. Этот процесс образования кратеров полностью не прекратился и в наше время. Космические аппараты на Марсе зарегистрировали очень даже свежие образования из семейства кратеров. Пример такого свежеиспеченного кратера и показан на рисунке 32. Его диаметр равен 25 километрам. В нижней части кольцевой вал разрушен другим, менее крупным метеоритным телом. Поскольку грунт Марса очень сыпучий, то насыпь вала образует оползни. Еще три кратера показаны на рисунке 33. Они выстроены в цепочку. Здесь виден сильно разрушенный старый кратер диаметром около 50 километров. Два других кратера диаметром 20 и 8 километров разрушены меньше. Полагают, что возраст этих кратеров более 2 миллиардов лет.




Рис. 32. Хорошо сохранившийся метеоритный кратер диаметром 25 км (33° ю. ш., 19° з. д.). Снимок сделан узкоугольной камерой «Марса-5»


Кратеры расположены на поверхности Марса отнюдь не равномерно. Экваториальные районы испещрены кратерами. В северной полярной шапке их мало. На юге они видны до самого полюса.





Рис. 33. Район плоскогорья северо-западнее Аргира (36° ю. ш., 79° з. д.). Диаметр большого сильно разрушенного кратера около 50 км. Снимок сделан узкоугольной камерой «Марса-5»


На Марсе есть горы и равнины. Равнины расположены среди кратеров. Одна из них равнина Аргир. В поперечнике она достигает 900 километров. Собственно, она представляет собой типичное кратерное море. Таких «морей» много на Луне. Другая равнина Эллада еще протяженнее: 1600 километров в одном направлении и 2000 километров в другом. Дно этой равнины нельзя назвать ровным. На этих же долготах имеются еще две равнины: Большой Сирт и равнина Исиды. Последняя к востоку переходит в равнину Элюзий, а к северу — в равнину Утотя. На долготе долины Аргир находится долина Ацидалийская. К югу она переходит в долину Хриса. Равниной представляет собой и местность вокруг южного полюса. Северный полюс Марса окружен огромной Великой Северной равниной. На этой полярной равнине есть много мелких кратеров. Один из них (побольше) назван именем Ломоносова.

Представляет интерес и долина Маринера. Она находится к северо-западу от долины Аргир. Эта долина весьма своеобразная. Она фактически представляет собой гигантский каньон. Общая длина каньона достигает 4,5 тысячи километров. Глубина этого огромного каньона достигает 2–3 километров, а в некоторых местах и того больше.





Рис. 34. Сравнительная схема высот горы Олимп и Эвереста


Семейство гигантских вулканов Фарсида состоит из трех вулканических конусов, горы Аскрийской, горы Павлины и горы Арсия. Горы на Марсе значительно выше, чем на Земле, выше 20 километров. К северо-западу от этих гор находится очень высокая гора Олимп. О масштабе марсианских гор можно судить по рисунку 34, на котором сравниваются марсианская гора Олимп и высочайшая вершина Земли Эверест. Вершина горы Олимп является вулканической. Эти вулканы потухшие. На вершинах всех четырех гор располагаются вулканические кальдеры огромных размеров. Одна из таких огромных кальдер показана на рисунке 35. Возраст ее достигает нескольких сотен миллионов лет. Эта кальдера находится на вершине горы Арсия, которая является самой южной из гор. Диаметр этой кальдеры впечатляет, он достигает 130 километров. Что же касается горы Олимп, то она является потухшим (?) вулканом. Тип вулкана — щитовой. Это особые вулканы, лава которых отличается жидкой консистенцией. При извержениях вулканов лава растекается на большие расстояния. Поэтому склоны такого вулкана очень пологие. Можно себе представить гору-вулкан, диаметр которой в основном достигает 600 километров. В земных условиях — нет. На Марсе это реальность.




Рис. 35. Огромная вулканическая кальдера диаметром 130 км венчает вершину горы Арсия — древнего и давно не действующего вулкана. Снимок NASA


Остальные три вулкана-гиганта в области Фарсида меньше Олимпа по высоте, но сами они находятся на возвышенности, которая приподнимает их на 3–5 километров. Полагают, что эти вулканы начали активно жить примерно полтора миллиарда лет назад. Олимп настолько огромен, что его наблюдали с Земли еще в прошлом столетии. Тогда это зрелище получило название «Снега Олимпа». Название было дано светлому образованию круглой формы и неясного происхождения. Но сейчас мы знаем, что это 1000-километровое кольцо облаков, которое часто опоясывает высочайший вулканический конус.




Рис. 36. Обильные излияния вулканических лав приводили к затоплениям обширных районов на расстояниях до 1500 км от вулкана. Участок поверхности выше и левее кратера Пикеринг (справа, диаметр 120 км) и само дно кратера подверглось затоплению при извержениях вулкана Арсия. Снимок NASA


До сих пор на Марсе не обнаружено ни одного действующего вулкана. Что касается равнин Марса, на которых нет кратеров, то они покрыты толстым слоем застывшей лавы. Сквозь трещины в коре планеты выделялись потоки лавы. Они заполняли низины. Одновременно лава в огромных количествах текла с вершин вулканов. На рисунке 36 виден район, который был залит лавой во время извержения вулкана Арсия. При извержении выбрасывались тучи пепла. Они ветром разносились по всей планете. Хотя плотность атмосферы на Марсе мала, ветер делает свое разрушающее дело. Следы ветровой эрозии видны везде. Ветры на дне кратеров насыпают песчаные дюны. Сила ветра на Марсе значительна. Ведь она определяется не только плотностью атмосферного газа (она невелика), но и скоростью ветра (она огромна). Сила ветра зависит от скорости во второй степени. Скорость увеличивается от 2 до 3 м/с, а сила его возрастает от 22=4 до 32=9. Регулярные местные ветры создают весьма устойчивые крупномасштабные полосы и характерные эоловы венцы. Эти полосы простираются вдоль плоскогорья и достигают 500 километров в направлении дующих непрерывно ветров. Здесь ветром создаются поля барханов, которые вытянуты вдоль плоскогорья.

Окраска поверхности Марса создается присутствием гидратов окислов железа. Они образуют слой красной пудры на зернах силикатного песка. Этот песок является основной составляющей поверхности планеты. Примерно десятую часть составляет примесь гидратов железа. Возможно, имеются и примеси других пород. Во всяком случае большая часть поверхности Марса представляет собой мелкий красный песок, из которого выдвигаются бесчисленные камни. Но красный песок покрывает частично даже камни. Песчинки очень мелки, всего 1–5 мкм (микрометров). Широко известны пылевые бури на Марсе. Есть ветер, и есть пыль. В результате получаются пылевые бури. Полагают, что когда буря затихает, то осевшие песчинки (практически пылинки) слипаются в комочки. Размер их достигает одного миллиметра. Когда сухие пылинки (песчинки) трутся друг о друга, они электризуются. Имея электрический заряд, они очень легко слипаются. Но при этом действуют не только электрические силы. На частицах может намерзать водяной иней или иней углекислоты. Естественно, что при этом они увеличиваются. Ясно одно: поверхность Марса составляют пыль, песок, камни и в некоторых местах скалы. Это не домыслы, а документированные данные, полученные с помощью космических аппаратов.

Мы уже упоминали о каньонах. Добавим еще несколько слов. Самым большим каньоном на Марсе является долина Маринера. Его длина 4500 километров, а глубина 5–7 километров. На дне каньона атмосферное давление вдвое больше, чем на нулевом уровне. Оно составляет 12 мбар. По сторонам каньона имеется развитая система «притоков». Это своего рода овраги. Западная оконечность этого огромного района переходит в лабиринт Ночи. Это разветвленная система трещин в поверхности планеты. Каждая трещина достигает 30 километров в ширину. Система трещин охватывает обширный район Марса. Протяженность района достигает 100 километров. Полагают, что система трещин образовалась в результате действия подпочвенных явлений. Не исключают и процессы, связанные с таянием вечной мерзлоты.

Особого внимания заслуживает туман, который покрывает долину Маринера по утрам, а иногда и к вечеру. Порой туман настолько плотный, что космические аппараты не могут «просматривать» марсианскую поверхность.

Главным является вопрос образования каньона. Конечно, это не канал, и выброшенного грунта нигде нет. Ясно одно, что если тектоника Земли состоит из отдельных плит (это мы рассмотрели в книге «Озонные дыры»), то вся кора Марса всегда двигалась как единая плита. Самый главный каньон Марса начал формироваться примерно около 3 миллиардов лет назад.

Каньон в долине Маринера, видимо, образовался так. Голова каньона (лабиринт Ночи) является результатом разрушения поверхности, которое продолжается. На склоне каньона видны слои пыли, лавы и вулканического пепла. Общая толщина слоя достигает 2 километров. Каньон — это своего рода разрез, причем на большую глубину. Из таких разрезов можно получить ценную информацию о строении и составе грунта на разных глубинах. Космические аппараты фотографировали оползни, которые проходят через метеоритные кратеры, пересекают друг друга и растекаются по дну. Получены снимки, на которых на склонах, на языках оползня видны несколько метеоритных кратеров диаметром в несколько сотен метров. Возраст оползней солидный. Полосы на языках оползней дают представление о направлении движения грунта. Полосы же на дне каньона дают информацию о направлении ветров.

Значительные области на поверхности Марса покрыты грунтом, который в древности переработан многократными ударами. Специалисты этот грунт называют реголитом.

Воды на Марсе очень мало (даже в виде водяного пара). Там не менее у специалистов есть основание предположить, что каньоны образовались потоками воды. Удивляться не надо. Космические аппараты сфотографировали на Марсе русла высохших рек. Два из этих снимков показаны на рисунке 37. В долине реки Нергал (верхняя часть рисунка) реки как таковой нет, есть только высохшее русло. Протяженность этого русла 400 километров. Мало того, рельеф местности позволяет заключить, что река Нергал впадала в огромное водохранилище. Внизу на рисунке 37 видно русло реки Маадим, протяженность которого достигает 700 километров. Обмеление этих и других рек происходило постепенно. Видимо, на планете менялись условия. Но куда исчезала вода и, вообще, откуда она бралась в более ранний период? Анализ всех данных, полученных с помощью космических аппаратов, позволяет нарисовать следующую картину.




Рис. 37. Вверху: сухое русло древней марсианской реки Нергал с притоками (долина глубоко прорезает лавовую равнину). Полная ее длина около 400 км. Внизу: долина Маадим длиной около 700 км. В средней ее части видна тонкая, более поздняя долина. Маадим находится в южном полушарии и вытянута вдоль меридиана 187° от 29 до 14° ю. ш., где соединяется с большим кратером. Снимок NASA


Еще до того как космические аппараты высадились на Марсе, большинство специалистов сходилbсь на том, что так называемые шапки Марса представляют собой не что иное, как лед, то есть замерpшую воду. Прямые измерения на Марсе показали, что температура зимней полярной шапки практически совпадает с температурой конденсации углекислого газа при марсианских давлениях: 148 К или -125 °C. Это наводит на мысль, что полярные шапки Марса могут состоять из замерзшего углекислого газа. Это значит, что, когда наступают зимние холода, в районе полярных шапок атмосферный газ конденсируется и выпадает в виде снега из углекислого газа. Толщина такого снежного покрова не больше 10 сантиметров. Но площадь шапок большая — от полюса до широты 55° и ниже. Когда наступает весна, этот снег тает и остается не тронутым теплом только в небольшой центральной области. Эта область невелика, всего 500–700 километров. Она покрыта снегом не из углекислого газа, а из воды. То есть это настоящий снег. Дело в том, что летом в этой области температура такая, при которой снег из углекислого газа обязан растаять. Правда, часть этого углекислого снега все же сохраняется и летом. Поэтому реальная картина такая: в полярных шапках имеются многочисленные слои обычного льда из воды вперемежку с напластованиями пыли и льда из СО2. Полная толщина этого хранилища достигает нескольких километров. Мы уже говорили о том, что южное и северное полушария (а значит, и полярные шапки) на Марсе находятся в неравноправных условиях. Поэтому не должно удивлять, что северная полярная шапка Марса (размер ее больше, чем размер южной шапки) состоит главным образом из водяного льда, тогда как в южной шапке преобладает лед из углекислого газа. Здесь основным регулятором выступает температура. В южном и северном полушарии сезонные температуры отличаются. Длительность сезонов в разных полушариях Марса также неодинакова.

Так все-таки что собой представляли реки на Марсе, и откуда бралась вода? Первичная атмосфера на Марсе была не той, что сейчас. Собственно, все планеты (в том числе и Земля) проходили через это. Когда-то на Марсе атмосферное давление было намного больше — 100, а может быть, и все 3000 мбар. Такое давление означает тепло, при котором тает любой лед, как водяной, так и лед из углекислого газа. Но в результате такого таяния должно еще больше повышаться атмосферное давление. Атмосфера из углекислого газа создает парниковый эффект, тем более если в атмосферном газе содержится водяной пар. В результате температура у поверхности Марса должна была повыситься не больше, не меньше как на все 100 градусов. В итоге мы получаем 30–50 °C. Это комфортные земные условия. Очень важную роль в этот период в атмосфере Марса, в его температуре играл водяной пар. А в то время водяного пара было много. Откуда он мог взяться? Во-первых, из той воды, которая выделялась при извержении вулканов. Она заполняла углубления на поверхности планеты и образовывала водоемы. Кроме того, при столь высокой температуре обязаны были таять подпочвенные мерзлоты. Это происходило из-за разогрева коры планеты. В это благоприятное, комфортное время на Марсе и текли реки. И какие реки! Многие реки брали свое начало «под землей». Иногда реки брали свое начало в небольших кратерах, но многие из них при этом уходили «под землю». Речь идет о явлениях, похожих на карст. В данном случае это результат растворения подземных месторождений солей или карбонатов. Специалисты не сомневаются, что на Марсе таяла вечная мерзлота. Мало того, специалисты считают, что и сейчас значительная часть воды на Марсе находится в подпочвенном состоянии вечной мерзлоты. Где скапливалась вода? В первую очередь, в естественных котлованах. Ими могли служить, прежде всего, кратеры. Они и заполнялись водой. Конечно, вода заполняла все углубления, создавая озера.

Но! Атмосфера состоит главным образом из углекислого газа. А она зиждется на водном основании. Углекислый газ хорошо растворяется в воде. В результате в тех условиях на Марсе атмосферное давление должно было падать, поскольку часть атмосферного газа (а большая часть его — углекислый газ) растворялась в воде и покидала атмосферу. Далее растворенный в воде атмосферный углекислый газ уносился водой и затем, скорее всего, выпадал в составе карбонатов в осадки. Так что воды на Марсе было достаточно. Но он ее потерял. Потерял потому, что у него не хватило сил удержать ее. Внизу в атмосфере находится вода (водяной пар). Выше молекулы воды (как и в атмосфере Земли) разрываются (диссоциируют) на отдельные атомы. А дальше водород убегает в космическое пространство. На Земле притяжение больше, и то она теряет 100 тонн водорода каждые сутки. На Марсе сила тяготения меньше. И поэтому потери его были больше. Вода ускользала с планеты очень быстро. Вода ушла. Закончились тепличные условия, которые обеспечивала вода. А далее все просто и понятно: температура понизилась, подпочвенная вода перешла в фазу льда (вечная мерзлота). Часть воды оказалась связанной в глинах. В этих условиях появились снежные полярные шапки. Они стали ловушками для паров воды, которые еще остались. Марс потерял воду, которая могла покрыть всю его поверхность слоем в 100 метров, а может, и больше.

Космический аппарат выполнял измерения в северном полушарии в период «макушки лета». Он зарегистрировал, что в керне полярной шапки в это время образуются протяженные промоины, которые обнаруживают многочисленные слои льда. Эти слои перемежаются тонкими слоями более темного материала. Температура шапки в это время составляет -73 °C, (то есть 200 К). Но она низка для того, чтобы появилась жидкая вода и могли образоваться ручьи. Лед испаряется, происходит сублимация льда. Он сразу переходит в пар. Поэтому и наблюдается повышенная концентрация водяного пара в атмосфере Марса вблизи летней полярной шапки. Лед покрыт слоем пыли, поэтому процесс испарения идет медленно.

Процессы на планете, а значит, и ее эволюция, во многом определяются ее массой. Так же и судьба звезды определяется ее массой. От плотности ядра планеты зависит температура плавления вещества, а также скорость процессов гравитационной и геохимической дифференциаций. От этой плотности зависит и скорость потери некоторых составляющих атмосферы. В прошедшей истории Марса были грандиозные извержения, в результате которых едва ли не половина планеты оказалась засыпанной пеплом. Была плотная и теплая атмосфера, а также бурные реки, намного большие земных. В прошлом образовались огромные каньоны. Вулканическая активность также была грандиозной.

Примерно 3 миллиарда лет назад кора Марса сильно нагрелась. Действовало тепло изнутри. Это операция радиоактивного распада и расслоение ее недр. В результате нагрева стал таять подпочвенный лед. Поэтому происходило последующее разламывание и опускание участков поверхности. Одновременно появились реки. На Марсе хранилось огромное количество воды в виде подпочвенной мерзлоты. Меняли вид поверхности и солевые излияния. Возможно, вид поверхности формировался и ледниками. Они могли образовать широкие протоки, которые огибали препятствия на поверхности планеты. Ледники создавали разные острова весьма странной обтекаемой формы. Атмосфера меньше влияла на формирование поверхности Марса. Специалисты считают, что сильных дождей в пору наводнений на Марсе не было. Поэтому ливни не разрушали поверхность планеты, ее кратеры и другие образования. Полагают, что и сейчас на Марсе много воды. Но она находится не на поверхности и не в атмосфере, а очень глубоко, в вечной мерзлоте. Во время тектонической активности Марса возникали в коре глубочайшие (в несколько километров) трещины. Они заполнялись водой, и так создавались естественные резервуары воды. Дальнейшая судьба воды зависела от температуры: то ли она замерзала, то ли снова выделялась на поверхность. Как мы уже видели, много воды в виде снега сосредоточено в полярных шапках. Что же касается таяния льдов полярных шапок, то оно обходится без жидкой фазы. Жидкой воды при таком таянии не образуется. Лед сразу испаряется, причем как лед углекислого газа, так и лед воды. Так, вначале весной тает сухой лед из углекислого газа. Он непосредственно переходит в газ. Затем, по мере потепления, то есть летом, начинает таять водяной лед. Он точно так же испаряется, то есть сразу превращается в пар, минуя жидкую фазу воды. Поэтому в результате таяния полярных льдов никаких наводнений нет.

Положение полярной оси Марса периодически меняется. То же происходит и с Землей (это мы описали в книге «Озонные дыры»). Период этого изменения составляет 120 тысяч лет. Поэтому (и не только поэтому) климат Марса (как и Земли) периодически меняется. Можно не сомневаться, что период оледенения на Марсе закончится и там снова будет тепло и комфортно. Земля же идет к очередному оледенению. Может, Марс и станет перевалочной базой для землян на тысячи лет. Только чем они будут дышать, и что они будут кушать?

Пылевые бури на Марсе уже вошли в поговорку. Это время, когда пылью заволакивает все. И надолго. Условия для пылевых бурь создаются в период великого противостояния. В это время Марс находится ближе всего к Солнцу. Поэтому он получает больше всего солнечной энергии. Солнечная энергия рассеивается в околосолнечном пространстве. Поэтому чем дальше, тем на единицу объема ее меньше. Не просто меньше, а намного меньше. Дело в том, что объем сферы определяется кубом радиуса сферы. Радиус — это и есть удаление от Солнца. Это значит, что если удаление планеты от Солнца удвоится, то она получит от Солнца энергии, но не в два раза меньше, а в 23=8 раз.

Но в период великого противостояния на атмосферу Марса действует не только большее количество солнечной энергии. Важно и то, что до этого в южном полушарии Марса была весна. Полагают, что именно весна в каждом из полушарий является спусковым механизмом, своеобразным сигналом к началу пылевой бури. Почему? Да потому, что именно с началом весны начинает таять (превращаться в пар) углекислота в полярной шапке. Это происходит так. До наступления весны, в конце зимы сухим льдом из углекислого газа покрыты полярные шапки Марса вплоть до широты 50°. Это огромные пространства. При наступлении весны весь этот углекислый газ переходит сразу в атмосферу. Из физики ясно, что при таком превращении вещества (его испарении) должно происходить охлаждение. Тепло уходит на компенсацию энергетических потерь, которые неизбежны при любом переходе вещества из одной фазы в другую. Когда испаряется лед из углекислого газа температура на поверхности полярной шапки (весной) составляет 148 К. Это -125 °C. В сущности даже весной полярные шапки Марса являются кладовыми холода. Поскольку в атмосферу добавляется приличное количество углекислого газа, атмосферное давление там растет. Нарушается равновесие (баланс) сил, и атмосфера неизбежно приходит в движение. Атмосферный газ устремляется туда, где давление меньше, то есть в противоположное полушарие. Так и образуются сильнейшие ветры, которые переносят большие массы атмосферного газа в южное полушарие, где в это время осень. Там этот газ конденсируется. В результате изъятия газа из атмосферы южного полушария давление там падает. Перепад давлений между северным и южным полушариями огромный. Поэтому атмосферный газ интенсивно перекачивается из северного полушария в южное. Так и создаются сильные бури. Когда углекислый газ в южной полярной шапке конденсируется и превращается в сухой лед (малый по объему), составляющие атмосферы, такие как аргон, азот и другие, остаются в атмосферном газе. Поэтому их относительное количество (относительно углекислого газа) растет. Бури всегда начинаются южнее экватора. Это происходит потому, что перигелию соответствует лето в южном полушарии.

В обычное время скорость ветра не превышает 10 м/с. Во время бурь она увеличивается в десятки раз. Образуются мощные вихри. Смерчи-вихри поднимают в воздух массы рыхлого грунта, и все заволакивает пылью. Затем пылевые облака перехватывают значительную часть солнечной энергии. Поэтому температура поверхности планеты падает. Это происходит очень неравномерно. Создаются большие местные перепады температуры. А это еще больше усиливает ветры. Во время пылевых бурь в атмосферу поднимается сотни миллионов тонн пыли. Основная масса пыли переносится близко от поверхности планеты. Во время пылевой бури энергию Солнца перехватывает атмосфера. Поэтому она и нагревается больше, чем обычно. Пылевые бури на Марсе длятся 50 — 100 земных суток.

На Земле и Венере работает парниковый эффект. Полученное от Солнца тепло удерживается атмосферой за счет разницы атмосферного поглощения в видимой и дальней инфракрасной областях спектра солнечного излучения. На Марсе все происходит наоборот. Там работает антипарниковый эффект. Он вызван тем, что пылевые облака на Марсе непрозрачны для приходящего от Солнца излучения. Зато они прозрачны для того излучения, которое идет от поверхности планеты. Поэтому планета свое тепло отдает в космическое пространство (у нее нет теплицы в виде озонного слоя, как у Земли), а тепло от Солнца недополучает из-за сильной запыленности атмосферы. Поэтому и происходит выстуживание поверхности планеты. Конечно, когда нет пылевых бурь и атмосфера Марса чистая, ситуация в энергетическом плане более благоприятная.

Особенность атмосферы Марса не только в ее составе и очень низкой плотности. Она и в том, что атмосфера неспособна задерживать ультрафиолетовое излучение Солнца.

Одним из самых интересных объектов на Марсе специалисты считают Элладу. Эта чаша диаметром около 2000 километров является уникальной. Ее можно даже наблюдать с Земли. Это светлое образование имеет форму правильного круга. Вначале, до полетов космических аппаратов полагали, что это некая огромная воронка с плоским дном. Но снимки, полученные космическими аппаратами, показали, что все «дно» Эллады покрыто развитой системой горных хребтов, которые ничем не напоминают то, что видно за пределами этого круга. На самом деле Эллада является гигантской чашей правильной формы. Как ни удивительно она служит местом хранения (чуланом) пылевых бурь на Марсе. Поэтому ее еще называют «сундуком Пандоры». При наблюдении с Земли создавалось впечатление, что видно дно этой чаши. На самом деле за дно принимали светлые облака марсианской пыли. Дело в том, что даже в условиях спокойной атмосферы в небе над Элладой имеются облака. Это не только облака из пыли, но и облака из конденсата углекислого газа. Они грядами располагаются вдоль краев этой огромной чаши.

Поразительно то, что горные хребты, каких больше нигде нет на Марсе, упрятаны в чашу на глубину 5 километров. Ответа на этот вопрос пока нет. Остается неясным, почему яркость спокойного розового неба Марса намного меньше, чем в пылевую бурю. И в то же время она почти в 100 раз больше, чем это следует из расчетов яркости для незапыленной атмосферы Марса. У Марса небо розовое, потому что в атмосфере постоянно присутствует заметное количество мелкой пыли. На ней и рассеивается солнечный свет. При рассеянии белого света (состоящего из всех цветов радуги) важны свойства рассеивающего вещества, в данном случае пыли. Важны прежде всего размеры частиц-пылинок, на которых и происходит рассеяние. Мелкие частицы пыли остаются в атмосфере Марса в течение нескольких лет.

На Земле подобные частицы достаточно быстро вымываются дождями. Но на Марсе дождей нет, поэтому атмосфере очиститься трудно. Ведь без дождя только под действием силы притяжения с высоты 10 километров такая частица размером в один микрометр (1 мкм) будет падать в течение нескольких сотен марсианских суток.

Что касается грунта Марса, то в нем содержится железа 12–14 %. До 20 % в нем кремния. Имеется много других элементов: кальция 4 %, алюминия 2–4 %, магния около 5 %. Имеется титан. Серы в грунте содержится 3 %.

Высокое содержание железа в грунте говорит о том, что Марс сильно отстал от Земли в смысле процессов гравитационного разделения (дифференциации). Если это разделение завершилось, планета имеет солидное ядро, которое намного тяжелее остальной части планеты. Так, в ядре Земли плотность вещества в 10 раз больше, чем плотность воды в нормальных условиях (10 г/см3). У Марса пока что сформировалось очень маленькое ядро. В нем сосредоточено всего 5–9 % всей массы планеты. Внутреннее строение Марса показано на рисунке 38. Литосфера Марса в отличие от литосферы Земли очень толстая.

Еще несколько слов о спутниках Марса. Спутники Марса Фобос и Деймос были открыты в 1877 году. Все любят цитировать Д. Свифта, который еще за 157 лет до открытия спутников Марса в знаменитых «Путешествиях Гулливера» писал о том, что астрономы Лапуты «открыли… две меньшие звезды, или спутника, которые обращаются вокруг Марса, причем внутренняя отстоит от центра планеты точно на три ее диаметра, а внешняя — на пять».



Рис. 38. Схема внутреннего строения Марса



Спутники Марса показаны на рисунке 39. Они очень маленькие и находятся почти на круговых орбитах. Они представляют собой типичные астероиды, которые когда-то были захвачены Марсом. Фобос обращается вокруг Марса с периодом 7 часов 39 минут, а Деймос — с периодом 30 часов 18 минут. Это обращение весьма своеобразное. Фобос восходит на западе и заходит на востоке. Это повторяется три раза в сутки. Размеры большой и малой оси Фобоса равны 27 и 20 километрам, а Деймоса — 16 и 10 километрам. Оба спутника совершают синхронное движение вокруг Марса. Своими большими осями они всегда направлены к центру Марса. Как и наша Луна, они всегда направлены к своей планете одной и той же стороной.




Рис. 39. Орбиты Фобоса и Деймоса



Плотность Фобоса почти вдвое больше плотности воды. Общая его масса примерно в 7 миллионов раз меньше массы Луны. Ускорение свободного падения на среднем уровне поверхности Фобоса в 1400 раз меньше, чем у поверхности Земли. Это значит, что человек в среднем весил бы там 60–70 граммов. При большом желании человек мог бы преодолеть силу притяжения Фобоса и отправиться в космическое пространство. Для этого ему надо было бы подпрыгнуть на высоту 2, 6 метра. Что касается Деймоса, то его ускорение свободного падения в два раза меньше.

В заключение описания Марса у нас есть возможность вернуться непосредственно к проблеме жизни вне Земли. Дело в том, что на Марс были посланы космические аппараты «Викинг». Их основной задачей был поиск возможных форм жизни на планете. Людям всегда очень хотелось, чтобы на Марсе была разумная жизнь. Поэтому возникла легенда о каналах на Марсе, которые прорыты разумными существами. Высказывались соображения и о растительности на Марсе. Поводы к этому были. О растительности на Марсе как будто свидетельствовали такие факты. Каждые полгода по марсианскому календарю с началом весны в одном из полушарий Марса появляется темная окантовка вокруг тающей полярной шапки. Затем она постепенно распространяется к экватору со скоростью примерно 30 километров в сутки. Когда она достигает экватора, то не останавливается, а переходит через него. Затем, но уже через полгода, такая же окантовка (волна) движется подобным образом, но уже от другого полюса. Это происходит регулярно. Когда волна прошла, области высоких широт светлеют, никакой окантовки нет. Приводилось и еще одно доказательство существования растительности на Марсе. После пылевых бурь на поверхность планеты выпадает пыль. Но наблюдения показывают, что контрасты между темными и светлыми областями при этом не меняются. Если бы там была растительность, то это было бы понятно. Эти доводы «за». Но есть доводы и «против». Так, в условиях очень сухой марсианской атмосферы вегетационный период в развитии растительности должен приходиться на весну. В это время тает полярная шапка и в атмосфере появляется хоть немного влаги. Далее можно рассуждать, что эта влага постепенно распространяется по направлению к экватору. Поэтому она способствует росту растительности. Однако прямые измерения с помощью наземных инфракрасных спектроскопов не позволили обнаружить органические молекулы СН. Если бы они там были, то они выдали бы себя своим излучением в виде характерных полос вблизи длины волны 3, 5 мкм. Но измерения этих полос не обнаружили.

Что же касается волны потемнения, которая распространяется от полярной шапки к экватору, то этот процесс, видимо, связан с переносом больших количеств пыли регулярными ветрами. Вулканы выбрасывают темную пыль, а местные ветры разносят эту пыль. При этом образуются характерные полосы, которые направлены от вулкана. Такие полосы наблюдаются. Правда, и в этом объяснении не все просто: на Марсе нет вулканов, которые выбрасывали бы пыль. Высказывались и другие объяснения этих волн.

Жизнь на Марсе искали два космических аппарата. Оба «Викинга» содержали портативные автоматизированные химические лаборатории. Они предназначались для того, чтобы определить, есть ли в грунте Марса какие-либо организмы.

Экспериментов было подготовлено и проведено несколько. В одном из них в герметически закрытой камере атмосфера над пробой грунта содержала, как и марсианская, углекислый газ. Но при этом часть атомов углерода-12 в нем была замещена на радиоактивный изотоп углерод-14. Грунт освещали светом, подобным солнечному. Если в этих условиях находятся земные микроорганизмы и растения, то они энергично поглощают углекислый газ. После этих приготовлений проба грунта нагревалась. В процессе нагрева органические вещества разлагались. Поэтому приборы должны были обнаружить усвоенный радиоактивный углерод. Это определенно доказывало бы использование микроорганизмами фотосинтеза. При проведении этого эксперимента на Земле (моделировались марсианские условия) эксперимент «работал» безотказно. Когда же аппараты «Викинг» проводили эти эксперименты на Марсе, то их результат был разным: то «да», то «нет». Другими словами, радиоактивный углерод то регистрировался, то нет.

Проводился и эксперимент «наоборот». Обитателей грунта подпитывали радиоактивной пищей. При этом проходил обмен веществ с окружающей средой. В результате этого обмена обитатели грунта должны были выделить меченый углекислый газ. Можно считать, что эксперимент на Марсе в этом варианте удался. Но многие специалисты считают, что получилось нечто не похожее на то, что ожидалось.

Третий эксперимент был тщательно отработан на Земле. Имитировались условия Марса. Суть эксперимента состояла в следующем. Грунт помещали в камеру с точно известной контрольной атмосферой. В результате жизнедеятельности микроорганизмов происходила подкормка грунта питательной смесью. Как следствие, изменялся состав газовой среды. На Земле проведение этого эксперимента занимало две недели. На Марсе из грунта сразу же стали выделяться углекислый газ и кислород. И вообще все реакции завершились за двое суток.

Как все это трактовать — не очень ясно. Говорит ли этот результат о том, что микроорганизмы на Марсе намного активнее земных? А может, дело в другом. Может, состав самого грунта на Марсе обладает необычными химическими свойствами. Возможно, в нем присутствуют некоторые перекиси, которые и обуславливают эти свойства? Если такой состав смачивать водой, то у него интенсивно выделяется газ. Конечно, очень важна и роль солнечного ультрафиолетового излучения, которым облучается грунт. Мы уже говорили, что на Марсе ультрафиолет беспрепятственно проникает до самой поверхности планеты. Почему ультрафиолет не уничтожает микроорганизмы? Конечно, уничтожает. Поэтому ищут микроорганизмы не на поверхности планеты, а на некоторой глубине, куда ультрафиолет не проникает.

На «Викинге» использовался специальный прибор (хроматограф), в котором образец грунта нагревался. Затем выходящие из грунта продукты разложения органических веществ (газы) анализировались с помощью масс-спектрометра. Этот прибор способен опознавать различные химические элементы и соединения. Грунт брали на глубине 4–6 сантиметров. В этом эксперименте было зарегистрировано выделение сравнительно больших количеств кислорода, а также водяного пара и углекислого газа. Но при этом не было обнаружено каких-либо органических соединений. Специалисты не сомневаются в том, что если бы такие соединения были, то прибор бы их зарегистрировал. Чувствительность прибора к примесям составляла одну десятимиллиардную долю. Об эффективности прибора можно судить по экспериментам, которые были проведены на Земле (в Антарктиде). Этот (или такой же) прибор обнаружил в одной десятой грамма грунта, взятого в Антарктиде, более двадцати органических соединений. Значит ли это, что на Марсе точно нет жизни? Не значит. Возможно, «Викинг» проводил измерения там, где жизни (микроорганизмов) было слишком мало. Но не надо обманывать себя тем, что прибор был безупречным. Его создали специалисты исходя из земных представлений о жизни. Ну, а если жизнь там совсем не похожая на земную? Тогда нельзя говорить о каких-либо результатах эксперимента. Ведь промелькнуло в 1996 году сообщение, что следы окаменелых микроорганизмов были обнаружены в метеорите, который некогда прилетел с Марса.

ЮПИТЕР

Юпитер является самой тяжелой планетой нашей Солнечной системы. Он в 318 раз тяжелее Земли. Ему не хватает очень немного для того, чтобы по массе сравняться со звездой.





Рис. 40. Юпитер — крупнейшая планета Солнечной системы, по диаметру в 11,2 раза превышающая земной шар. На снимке, сделанном с расстояния 28 млн км, видны темные пояса и светлые зоны, охватывающие планету, Большое Красное Пятно (слева внизу) и два из шестнадцати спутников Юпитера: Ио (на фоне планеты) и Европа (справа). Снимок NASA. На врезке — Земля в том же масштабе


Недаром почти сто лет назад знаменитый Фламмарион, книга которого «Множественность миров» переиздавалась десятки раз, в своей «Популярной астрономии» писал: «Юпитер, по-видимому, еще формирующийся мир, который недавно — несколько тысяч веков тому назад — служил Солнцем в своей собственной системе». Фламмарион, конечно, ошибался. Если бы масса Юпитера была в десятки раз больше, то он действительно стал бы звездой. Как мы уже говорили, под действием сил притяжения в небесном теле, если эти силы достаточно велики, внутри тела создается очень высокая температура, что приводит к «запуску» ядерных реакций. Но с Юпитером это не случится никогда. Он является планетой, и только планетой. И светится Юпитер только потому, что он отражает (как и Луна) свет Солнца. Юпитер достаточно хорошо изучен астрономами. Многие сведения о нем можно получить даже с помощью любительских телескопов. Из-за того что Юпитер вращается очень быстро (один оборот вокруг своей оси он совершает за десять часов, тогда как Земля оборачивается за 24 часа), произошло сильное сжатие планеты. Оно значительно больше, чем сжатие Земли.

Видимая поверхность Юпитера (как и Солнца) — это газ. Поэтому на разных широтах он вращается с разной скоростью. В экваториальной зоне оборот совершается за 9 часов 50 минут, а в умеренных зонах — за 9 часов 56 минут. В телескопы Юпитер виден желтоватым. На этом фоне четко различаются сероватые полосы, они простираются вдоль параллелей, то есть параллельно экватору. Эти полосы — образования в атмосферном газе, поэтому они весьма изменчивы. Что касается твердой поверхности Юпитера, то мы ее в телескопы не видим (рисунок 40).

Особой достопримечательностью Юпитера является его Красное Пятно. Оно очень стабильно и представляет собой громадную овальную розоватую область, расположенную в Южном полушарии планеты. Оно простирается на 35 000 километров по долготе и на 14 000 километров по широте. Это Пятно было открыто в XVII веке. С тех пор оно остается на одном и том же месте. Меняется со временем только интенсивность его окраски. Причем эти изменения носят периодический характер. Наблюдения с помощью космических аппаратов «Пионер-11» и «Вояджер-1» показали, что Красное Пятно на Юпитере имеет вихревую природу. Другими словами, речь опять же идет об атмосфере Юпитера, а не о его твердой поверхности. Собственно, Красное Пятно представляет собой огромный вихрь в атмосфере Юпитера, который вращается вокруг своей оси с периодом в 6 земных суток. Это своего рода газовый волчок, юла. О таких, по сути, вихрях в земной атмосфере нам ежедневно сообщают синоптики. Это циклоны и антициклоны в зависимости от направления вращения. Вихрь на Юпитере является циклоном. Но он стоит на одном месте и не перемещается, как земные циклоны и антициклоны. Это обусловлено особенностями строения атмосферы Юпитера. Сейчас мы существенно меняем атмосферу на Земле, ее состав и динамический режим, и не исключено, что циклоны и антициклоны в атмосфере Земли застабилизируются. Если это случится, то в одних местах на Земле будет непрерывный ливень, а в других — жара без единой дождинки. Эту проблему мы рассмотрели в книгах «Озонные дыры — мифы и реальность», «Озонные дыры и гибель человечества?» и «Космос и погода».

Что же касается Юпитера, то там это явление (Красное Пятно) имеет естественную природу. Собственно, динамика атмосферы Юпитера характеризуется не только одним Красным Пятном. Оно просто самое выдающееся. Там имеются и другие вихревые образования, которые из-за их неподвижности воспринимаются как пятна. Вторым по размерам является Белое Пятно. Его диаметр весьма внушителен. Он составляет 16 000 километров.

Атмосфера любой планеты находится в электрическом поле. Именно атмосферное электрическое поле является причиной гроз на Земле. Оно меняется в зависимости от облачности и движений в атмосфере. При этом происходит изменение распределения электрических зарядов в атмосфере и на поверхности Земли. Разряды и представляют собой молнии. Молнии в атмосфере Юпитера имеют такую же физическую природу. Только там все более внушительно. Там не просто больше молний-разрядов, но они намного интенсивнее. Находящийся там человек был бы ошеломлен ослепительными вспышками гигантских молний в атмосфере Юпитера. Что же касается раскатов грома, порождаемых этими молниями, то они действительно являются оглушительными. Вынести такую громкость человек не в состоянии. Видимо, не случайно древние назвали бога-громовержца Юпитером. Они знали больше, чем мы думаем.

Что же представляет собой атмосфера Юпитера? Примерно две третьих ее (77 %) составляет водород и одну треть (23 %) — гелий. Это грубо. На самом деле в атмосферном газе Юпитера содержатся незначительные по количеству примеси аммиака и метана.

Юпитер, как и Земля, имеет свое собственное магнитное поле. Он образует магнитосферу, которая оказывает влияние на движение заряженных частиц. То же самое характерно для Земли. Но магнитное поле Юпитера в 50 раз сильнее магнитного поля Земли. Направлено оно противоположно магнитному полю Земли. Мы уже описывали магнитосферу Земли и убедились в том, что магнитные полюса не совпадают с географическими. То же самое характерно и для Юпитера. Его магнитные полюса смещены относительно географических на 11°. Другими словами, ось магнитного поля Юпитера наклонена под углом в 11° к оси его вращения.

Магнитное поле Земли простирается со стороны Солнца примерно на десять земных радиусов. Магнитное поле Юпитера, будучи более интенсивным, простирается с дневной (солнечной) стороны на 90 радиусов Юпитера. Это составляет 6 миллионов километров.

Везде в космосе, где имеется магнитное поле, оно захватывает заряженные частицы и исправляет их движение. Такие магнитные ловушки образуют и магнитосферы Земли и Юпитера. Чем сильнее магнитное поле, тем мощнее ловушка. Поэтому вокруг Юпитера имеются области (пояса), которые заполнены заряженными частицами. У Земли также имеются подобные радиационные пояса, но они в 40 000 раз слабее по интенсивности. Эти пояса обнаруживаются исследователями заряженных частиц, но и измерениями электромагнитных волн, которые эти частицы излучают. Это очень удобно, поскольку электромагнитную волну можно измерить, зафиксировать далеко от места ее излучения и для этого не надо отправлять измерительную аппаратуру на Юпитер. С заряженными частицами в магнитосфере Земли связаны северные сияния. Ученые их называют полярными сияниями, поскольку они одинаково часто наблюдаются в полярных широтах как Северного, так и Южного полушария. В атмосфере Юпитера (в высоких широтах обоих полушарий) также имеют место полярные сияния. Они очень интенсивные. Это позволило исследователям наблюдать их даже с Земли.

Все эти процессы изменяются во времени, они протекают в ритме Солнца, поскольку источником заряженных частиц является именно Солнце. Само же Солнце, его активность, его кипение и выброс заряженных частиц меняются во времени. Эти изменения не строго периодические, а циклические. Продолжительность циклов составляет от 11 до 1800 лет.

Внутри Юпитер состоит из водорода и гелия. Полагают, что соотношение у них такое же, как и у Солнца: 20 % гелия и около 80 % водорода. Если это так, то в центре Юпитера давление достигает 5 миллионов Мпа. Температура там достигает 20 000 °C. Самый наружный слой Юпитера толщиной в 0,02 радиуса планеты, состоит полностью из водорода и гелия. Под этим слоем находится очень толстый слой жидкого молекулярного водорода. Это своего рода водородный океан, глубина которого достигает 0,22 радиуса Юпитера. Напомним, что экваториальный радиус Юпитера равен 71 400 метрам. Твердая поверхность Юпитера находится только под этим океаном. Она составляет его дно. Но это дно очень своеобразное. Оно образовано водородом в твердой фазе — металлическим водородом. Толщина этого твердого дна меньше, чем глубина океана. Она составляет 0,16 радиуса Юпитера. Но дно своеобразно не только этим. Оно очень вязкое, поскольку нет резкого перехода от жидкого водорода к твердому (металлическому). Молекулярный водород переходит в твердую (металлическую) фазу под большим давлением. Уже на глубине около 10 000 километров давление достигает 250 тысяч Мпа. При таком давлении молекулярный водород переходит в одновалентный металлический водород. В этом металле протоны и электроны существуют раздельно. Металлический водород по своим свойствам очень напоминает обычный жидкий металл с высокой проводимостью. Но поскольку планета быстро вращается, то в этом проводящем металле возникают кольцевые электрические токи большой интенсивности. Любой электрический ток создает вокруг себя магнитное поле. Поэтому и эти интенсивные кольцевые электрические токи создают мощное магнитное поле.

Ядро Юпитера является железосиликатным. Его радиус составляет 0,15 радиуса Юпитера. Ученые допускают, что ядро Юпитера покрыто сплошной коркой льда или даже обычным жидким океаном, масса которого в 30 раз больше массы Земли.

Юпитер получает от Солнца в 27 раз меньше тепла, чем Земля. Это и понятно — он находится значительно дальше от Солнца, чем Земля. Но зато он согревается своим собственным теплом, которое идет из его недр.

Можно сказать, что Юпитер является чем-то средним между карликовой звездой и планетами земного типа. Поэтому он очень своеобразный, мало похожий на другие планеты. Снаружи планеты имеется быстроменяющаяся оболочка из облаков, которые окрашены. Эта окраска создается небольшими примесями каких-то веществ, возможно фосфина РН3. Под этой оболочкой скрывается огромный океан из жидкого водорода. Глубина этого океана достигает многих тысяч километров. Под этим водородным океаном находится дно из металлического водорода. Под этим дном находится твердое ядро планеты. И все это в полной темноте, которая наступает уже на глубине 200–300 километров, то есть в его атмосфере.

САТУРН

Сатурн стоит на втором месте после Юпитера по величине своей массы. Но он очень экзотический. Так, если бы поместили Сатурн в миску с водой, то он не утонул бы. Он легче воды, что очень удивляет.

Наибольшая достопримечательность Сатурна — это его знаменитые кольца (рис. 41). Размеры его огромны, но он все же меньше Юпитера. Сатурн тяжелее Земли в 95 раз. Сжатие его больше, чем у Юпитера. Сутки на Юпитере равны 10,5 часа. Атмосферный газ Сатурна, как и Юпитера, вращается на разных широтах с разной скоростью. Сатурн имеет 17 спутников. Долгое время считалось, что кольцо (а точнее, кольца) имеются только у Сатурна. Но не так давно было установлено, что кольца имеются и у других планет-гигантов

Солнечной системы — Юпитера, Урана и Нептуна. Просто у Сатурна кольца более плотные, а значит и более яркие, и наблюдать их легче. Кольца не представляют собой что-то сплошное. Они состоят из мелких камней и пыли.




Рис. 41. Сатурн с расстояния 18 млн км. Темная полоса на планете — тень кольца. На снимке показаны внешнее кольцо А, среднее В и деление Кассини между ними; внутреннее кольцо С не видно. Снимок NASA


Так, автоматическая космическая станция «Вояджер» обнаружила два кольца вокруг Юпитера, находящиеся в экваториальной плоскости Юпитера. Радиус внешнего края большого кольца составляет 126 000 километров, а внутреннего края — 11 300 километров. Толщина кольца составляет всего 1 километр. У Юпитера было обнаружено и второе, внутреннее кольцо. Природа его такая же, что и внешнего кольца. Оно почти примыкает к внешним слоям атмосферы планеты. Кольца были обнаружены и у Нептуна и Урана.




Рис. 42. Подробные снимки показывают много тысяч отдельных колец. Снимок NASA


Поскольку кольца Сатурна более плотные, то они были обнаружены еще в XVII веке. Но после их открытия они рисовались чем-то сплошным, такой беговой дорожкой вокруг планеты. На самом деле покрытые льдом камни образуют не одно однородное кольцо, а великое множество узких и тонких колечек. Толщина же всех колец Сатурна не превышает 2 километров. Отдельные камни, из которых состоят кольца, в поперечнике не превышают 10 метров (рис. 42).

Измерения с применением спектрального анализа показали, что атмосфера Сатурна состоит из водорода, метана, ацетилена и этана. Присутствует в атмосфере Сатурна и гелий. Но измерять его трудно, поскольку его спектральные линии находятся за пределами видимой нам части спектра. Во всяком случае специалисты утверждают, что Сатурн на 90 % состоит из водорода и гелия.

Газовая атмосфера Сатурна составляет примерно 1000 километров по высоте. Под атмосферой расположен заливающий всю планету океан, который состоит из водорода и гелия. Чем глубже, тем температура выше. На глубине примерно в половину радиуса планеты (60 000 километров) температура повышается до 10 000 °C, а давление достигает 3 тысяч Мпа. Под этим глобальным океаном имеется дно из металлического водорода, как и у Юпитера. В этом проводящем слое создаются колоссальные электрические токи, которые, в свою очередь, создают интенсивное магнитное поле.

Магнитосфера Сатурна по напряженности значительно меньше, чем у Юпитера. На экваторе планеты напряженность магнитного поля примерно равна 15, 9 А. Размеры магнитосферы Сатурна таковы: со стороны Солнца она простирается на 35 радиусов Сатурна. Повторим, что у Земли с дневной стороны магнитосфера простирается до 10 радиусов Земли. Заряженные частицы, захваченные в магнитосфере Сатурна, излучают электромагнитные волны. Они регистрируются исследователями, и это позволяет получать информацию об условиях в магнитосфере Сатурна.

Сатурн также содержит ядро. Это расплавленное сили-катно-металлическое ядро, которое находится в условиях, где имеется огромное давление, а температура достигает 20 000 °C. Масса этого ядра в 9 раз превосходит массу Земли. Ядро это весьма крупное.

Что касается «дна» океана Сатурна, то оно начинается примерно на уровне 0,46 радиуса Сатурна и простирается до его ядра, радиус которого составляет 0,27 радиуса Сатурна. Именно в ядре находится источник тепла, которое согревает всю планету.

По многим свойствам планеты Юпитер и Сатурн похожи.

УРАН И НЕПТУН

Эти две планеты специалисты считают гигантами-близнецами. Они находятся на окраине Солнечной системы. Обе планеты медленно обращаются вокруг Солнца.

Радиус Урана составляет 26 200 километров, что более чем в 4 раза превышает радиус Земли. Радиус Нептуна равен 24 300 километрам. Уран тяжелее Земли в 14, 6 раза, а Нептун — в 17,2 раза. Средние плотности планет очень близки. У Урана средняя плотность равна 1,71 г/см3, а у Нептуна — 1,72 г/см3.

Обе планеты относительно быстро вращаются вокруг своих осей. На Уране сутки равны около 10 часов, а на Нептуне они несколько длиннее. Но продолжительность года на обеих планетах различается существенно. Так, Уран завершает полный цикл вокруг Солнца за 84 земных года (это продолжительность года Урана), тогда как Нептун находится в пути вдвое дольше (165 земных лет). Нептун был открыт в 1846 году. С тех пор не прошло ни одного нептуновского года.

Уран практически лежит на боку, то есть его ось вращения находится почти в плоскости его орбиты. Специалисты не совсем понимают, почему Уран так специфично расположен в пространстве. Но нет худа без добра: мы с Земли имеем возможность рассматривать одновременно оба полушария планеты, то есть всю ее поверхность, включая и полярные шапки.

При наблюдении с Земли (в телескопы, конечно) на Уране просматриваются слабые сероватые полосы, которые вытянуты в направлении экватора. На полюсах видны круглые темно-серые пятна. Что-то подобное просматривается и на Нептуне. Но на его поверхности полосы гораздо слабее. Кроме того, они видны не везде (даже в очень сильные в смысле разрешения телескопы).

Этим далеким планетам достается очень мало солнечного тепла. Если пересчитать солнечную энергию, которую они получают, в температуру, то на Уране должно быть -220 °C, а на Нептуне -230 °C. На самом деле там теплее: -150 °C и — 170 °C соответственно. Ясно, что обе планеты дополучают тепло из своих собственных недр. А там очень горячо. Так, в центре Урана давление достигает 600 тысяч Мпа, а температура составляет 10–12 тысяч градусов. Недра Нептуна и того горячее, там температура достигает 12–14 тысяч градусов.

Половину атмосферного газа на обеих планетах составляет молекулярный водород. Примерно пятую часть составляет метан. Не менее 5 % занимает аммиак. Кроме них в атмосфере обеих планет имеются гелий, этан, ацетилен и, видимо, водяной пар.

Внутреннее строение Урана и Нептуна отличается от такового у Юпитера. Это и понятно. Обе эти планеты примерно в 20 раз легче Юпитера. Недра Урана и Нептуна только на 20 % состоят из гелия и водорода. Остальные 80 % приходятся на более тяжелые элементы. Они входят главным образом в железосиликаты.

В сущности, Уран и Нептун являются промежуточными телами между «полузвездами» Юпитером и Сатурном и планетами земного типа.

НЕБЕСНЫЕ ТЕЛА НА ЗЕМЛЕ

Выше мы рассмотрели падение метеоритов на Землю. Но это были метеориты, состоящие из неорганического вещества. Истинную же сенсацию вызвали небесные тела, падающие на Землю, которые богаты углеводородными составляющими. Это органика. Следовательно, жизнь во Вселенной реальна.

Все началось примерно 200 лет назад. Происшедшее описано так: «Примерно в 5 час. 30 мин. дня 15 марта 1806 г. человек по имени Ребуль и его сын Мезель, рабочие местного землевладельца, работали в поле неподалеку от деревни Валанс, на юге Франции. Они вдруг услышали как бы пушечный выстрел. Наполеоновские войска находились далеко на востоке, так как битва при Аустерлице произошла всего три месяца назад. Кроме того, казалось, что звук долетает с неба и сопровождается каким-то страшным грохотом. За ним, в свою очередь, следовал звук, который, как говорили мужчины впоследствии, был похож на скрип вращающегося ворота у колодца, когда его отпустили, позволив ведру устремиться вниз.

В следующий момент они увидели какой-то предмет, летящий по небу к ним. Он врезался в землю в пятнадцати шагах от Ребуля, который осторожно приблизился к нему и увидел кусок черного вещества размером с детскую голову, который раскололся на три обломка.

В то же время на расстоянии нескольких километров от того места с другими людьми в поле произошло подобное событие. Горожанам, приехавшим из соседнего города Алэ для исследования случившегося, эти люди сказали, что увидели темный предмет, который вылетел из облаков и упал рядом с ними, разорвавшись на куски и вырыв неглубокую яму».

Ребуля и его сына уговорили расстаться с одним из трех обломков. Второй осколок был взят из другой группы обломков. Обломками, прилетевшими из космоса, занялись специалисты. Стало ясно, что на Землю упал особый метеорит, который был назван Алэ.

Серьезные исследования метеорита были проведены только спустя 28 лет. Их провел знаменитый шведский химик Якоб Берцелиус. Ученый усомнился, что к нему попал метеорит — он был слишком рыхлым и таял в воде. До этого момента были известны три типа метеоритов: железные (с примесью никеля), каменные и железные с каменными включениями, подобно кексу с изюмом. Ученый провел химический анализ небесного тела и установил, что оно богато углеродными составляющими. По внешнему виду создавалось впечатление, что небесное вещество содержит перегной, что-то вроде смеси разложившихся растительных и животных веществ, которыми богата почва. Ясно, что вставал вопрос о присутствии живых организмов на внеземных телах.

Так было зафиксировано впервые падение на Землю ме-теорита — углистого хондрита. Такое падение происходит очень редко. Но, тем не менее, прошло еще 130 лет, прежде чем специалисты определились с небесным телом. Точнее, не определились, а разошлись в своих определениях. Еще первый исследователь углистого хондрита Берцелиус не допускал мысли, что попавшее к нему небесное тело свидетельствует о присутствии живых организмов в космосе. Он доказывал, что хотя углеродные соединения в метеорите очень сходные с соединениями почвы, это не является доказательством присутствия организмов в первоначальном источнике» (это слова самого ученого). Исследователь считал, что камень, оторвавшийся от родительского тела, должен был превратиться в «землю» с помощью какого-то неизвестного процесса.

Но загадочные» камни» с неба продолжали падать. Так, через четыре года после вердикта ученого упал еще один метеорит — углистый хондрит, как будто специально, чтобы опровергнуть мнение знаменитости. Падение зафиксировали в Южной Африке, в районе гор Колд-Бокквельд. Еще через какое-то время в 1857 году был найден еще один (третий) небесный объект в Кабе, около венгерского города Дебрецен. Последними двумя образцами занялся ученик Берцелиуса Фридрих Велер. Он работал в Германии, в городе Геттинген и был достойным учеником своего учителя. Ведь он был первым, кто синтезировал в лаборатории органическое соединение — мочевину. Велер из предоставленного ему метеорита выделил маслянистое вещество «с сильным битуминозным запахом». Ученый доказал, что метеорит содержит органическое вещество. Он писал: «Если опираться на современный уровень знаний, то надо признать, что такие вещества могут образовываться только живыми организмами».

Вскоре, 14 мая 1864 года произошло новое явление космического гостя. Его наблюдали крестьяне на юге Франции. «По небу пронеслось огненное тело величиной с полную луну, но ярче солнца. Оно было слегка вытянутой формы, как слеза, и пронеслось по небу с шумом железнодорожного экспресса, прерываемым раскатами грома. Во всей Аквитании было видно, как огненный шар раскололся на куски, которые быстро потемнели. За ним тянулся широкий светящийся след, переходящий в белый дым, который медленно рассеивался. Когда рассвело, то обнаружились многочисленные осколки метеоритного дождя, выпавшего в районе деревни Оргейль. Ученые, приехавшие из соседнего города Монтобан, собрали двадцать кусков, некоторые размером с голову, но большинство были меньше кулака. Они обнаружили, что образцы можно резать ножом и ими можно было писать, как карандашом». Так описал эти события Салливан.

Ученые тут же исследовали небесное вещество. Оказалось, что частицы вещества были скреплены друг с другом «солью», которая растворялась в воде. Поэтому в воде такой космический комок практически рассыпался, так как цементирующий его раствор водой уничтожался. Оказалось, что углерод, водород и кислород, которые находились в этом веществе, были очень похожи на эти же вещества, которые имеются в торфе или буром угле. Поэтому ученый Клец, который проводил эти анализы, пришел к выводу, что эти космические вещества «могут указывать на существование организованной материи на небесных телах». Другими словами, исследователь сделал вывод о том, что и на других космических телах имеется жизнь.

Но прошло около ста лет, а решение проблемы так и не продвинулось. К 1964 году было зафиксировано более чем 1500 метеоритов. Только 20 из них имели указанные выше свойства. Когда падают метеориты, то они рассыпаются на множество кусков. Так, метеорит, упавший в Польше в 1868 году (в районе Пуастука), рассыпался на сто тысяч каменных обломков. После Сихотэ-Алиньского метеорита было собрано 37 тонн железа. Он упал 12 февраля 1947 года и осыпал железным дождем огромную площадь.

Большинство метеоритов являются каменными (92 %). Но наиболее заметны и привлекательны железные метеориты (рис. 43). Поэтому их чаще находят, хотя они составляют всего 6 % от общего числа метеоритов. Примерно 2 % метеоритов состоят как из железа, так и из камня. Эти промежуточные метеориты называют «железокаменными». Каменные метеориты менее стойкие и при падении сильно дробятся. Поэтому хотя железных метеоритов намного меньше по количеству, но по их общей массе они преобладают.




Рис. 43. Полированный разрез железного метеорита. Видны видманштеттеновы фигуры. Метеорит Роутон из Отдела естественной истории Британского музея.


Для рассматриваемой нами проблемы жизни во Вселенной представляют интерес те метеориты, которые богаты углеродом. Для них характерна рыхлая структура. Одно из последних падений такого метеорита, которое наблюдалось 9 сентября 1961 года, описано так: «Был субботний вечер, и открытые кинотеатры были переполнены народом. Вдруг кадры исчезли с экрана из-за ослепительного света, как будто из-за горизонта вновь поднялось солнце. Те, кто в этот момент посмотрел вверх, увидели огненный шар, летящий прямо над головами». Этот метеорит был действительно огромным. Его вес был не менее нескольких тонн. Но ему не повезло. Вскоре в этих местах прошел ливень, вызванный ураганом, и осколки метеорита растворились. Удалось собрать не более 300 граммов небесного вещества. Но этому веществу не было цены. Оно очень сильно напоминало земную почву и наводило на мысль о том, что жизнь во Вселенной бесконечна и мы не одни.

Эти метеориты называют углистыми хондритами. Углистыми потому, что они содержат углерод. Хондритами потому, что содержат маленькие шарики, которые называются хондрами (рис. 44). Собственно, эти шарики-хондры содержат 14 из каждых 15 каменных метеоритов. В земных горных породах не обнаружено ничего похожего на такие шарики из железо-магниевых силикатов.

Важно понять, как образовались эти шарики-хондры и как они связаны с метеоритами. Очень информативным оказалось строение метеоритов. Их структура поразительно разнообразна и красива. Иногда метеорит одного типа полностью вделан в метеорит совершенно другого типа. Более того, нередки случаи, когда вещество внутри одного метеоритного образца представляет, пять «поколений»





Рис. 44. Хондрит (каменный метеорит) в разрезе. Метеорит Беддгелерт из Отдела естественной истории Британского музея


метеоритов. Одни разрушались, и их осколки входили в состав вновь образующихся метеоритов.

Что же касается шариков-хондров, то они обладают очень интересными свойствами. Например, они настолько равномерно распределены внутри некоторых образцов, что это поражает воображение. Чем это обусловлено, мы так и не знаем. Предлагались различные объяснения. Например, было высказано предположение, что эти шарики — застывшие капельки когда-то расплавленной породы. Но при вулканических извержениях на Земле никаких шариков не образуется. Можно, конечно, предположить, что на других небесных телах все происходит по-иному и какая-то расплавленная порода образует шарики, располагающиеся в определенном порядке. Полагают также, что шарики образовались внутри горной породы при столкновении метеоритов с поверхностью Земли. Но и это только гипотеза. Соблазнительно было предположить, что шарики-хондры представляют собой застывшие капли вещества, которое испарилось в результате взрыва при столкновении. Это испарение могло гипотетически превратиться в капельки вещества. Так мог образоваться горячий дождь. Это вещество могло сконденсироваться из газов, которые были выброшены из Солнца в период его образования. Такие выбросы могли быть возможными из-за быстрого вращения Солнца. Поэтому не исключено, что метеориты несут в себе информацию о первых мгновениях Солнечной системы.

Если хондры считать свидетельством наличия жизни во Вселенной, то надо, чтобы родительское тело имело достаточные размеры. Другими словами, метеориты с хондрами должны происходить от небесного тела, которое не меньше Луны. Но этого недостаточно. В метеоритах были обнаружены алмазы. Опыты на Земле подтвердили, что превращение углерода в алмаз происходит только при очень высоком давлении. Значит, на родительском теле должна была существовать первоначальная газовая оболочка, которая могла бы обеспечить такое высокое давление. Было высказано и другое мнение, что алмазы образовались из углерода при ударе метеоритов о поверхность Земли. Исключить такой процесс нельзя. Некоторые специалисты полагают, что родительское тело не обязательно было большим. Если небесное тело большое, то метеоритные образцы не смогли бы удержать газы, которые образуются внутри них в результате радиоактивного распада в течение последних 4 миллиардов лет. Полагают, что метеориты накапливали газы со времени молодости Солнечной системы. А это означает, что родительское небесное тело охлаждалось быстро. Пока метеориты были горячими, в них не могли накапливаться газы. Если же тела охлаждались давно, то они должны быть значительно меньше Луны. Мнений много. Некоторые специалисты полагают, что метеориты образовались вследствие крушения одной или нескольких планет. Но и это только гипотеза. Гипотез много, а проблема остается нерешенной. Но она решается. Так, с 1959 года начали появляться обнадеживающие результаты. Ученые исследовали кусок углистого хондрита и сопоставили с результатами опытов с «первородными» газами. Результаты работы ученые изложили в докладе «Внеземная жизнь. Некоторые органические составляющие метеоритов и их значение для возможной биологической эволюции вне Земли». К своим коллегам исследователи обратились со словами: «Сам факт, что проблему внеземной жизни сочли достаточно серьезной для включения ее в повестку дня, в достаточной степени свидетельствует о том, что интерес людей к возможности существования жизни на небесных телах, которые они видят над собой, еще жив, как было и в те времена, когда люди впервые посмотрели на эти тела и стали размышлять о них». О метеоритах авторы доклада сказали так: «Это дар небес, если можно так выразиться, который мы не должны упускать». Ученые не сомневались в том, что «в космическом пространстве кружатся вокруг Солнца довольно сложные соединения углерода».

В ходе экспериментов ученые из образцов метеоритов выпаривали летучие вещества. Затем эти вещества они исследовали с помощью прибора, позволяющего определить химический состав вещества. Такой прибор называется масс-спектрометром. Так ученые определяли относительные массы молекул вещества метеорита. Превращая молекулы в заряженные частицы-ионы и прилагая внешнее магнитное поле, исследователи смогли определить, сколько имеется в веществе молекул с разными массами. В этом и состоит суть метода масс-спектрометрии.

Из метеоритов выделяли различные вещества с помощью растворителей. Среди растворителей была води и четыреххлористый углерод. Затем эти выделенные вещества исследовались по поглощению ими инфракрасных и ультрафиолетовых лучей. В результате в веществе были обнаружены металлы и метилены. По отношению количеств этих соединений было определено количество молекул, построенных из цепочек, в которые входят 15 или более атомов углерода. Исследовались как инфракрасные спектры экстракта четыреххлористого углерода, так и ультрафиолетовые спектры водных экстрактов. Изучались изменения этих спектров при разной кислотности. Результаты показали, что полученные характеристики являются типичными для цитодина, который является одним из четырех оснований — носителей «кода жизни» в молекуле ДНК. Нельзя было утверждать, что это вещество было цитодином. Но оно имело свойства, типичные для цитодина.

Принципиальным результатом было то, что в метеоритах имеется только ограниченное число сложных веществ, которые подобны цитодину. Загадкой для ученых было то, что в метеоритах отсутствовали другие важнейшие предбиологические соединения — аминокислоты.

В углистых метеоритах были обнаружены углеводороды, смесь которых была похожа по составу на парафин или нефть. При этом все соединения им отождествить не удалось.

Через некоторое время другие исследователи продвинулись значительно вперед в решении проблемы углистых метеоритов. Они исследовали кусочек метеорита с помощью методов, которые они применяли при изучении нефтяных продуктов. Из образца метеорита они выделяли углеводороды путем сухой перегонки. Затем их исследовали с помощью масс-спектрометра. При этом они установили, что некоторые углеводороды содержат цепочки из 29 атомов углерода. При этом они обнаруживали поразительное сходство с парафинами и другими углеводородами, которые присутствуют в живой материи. Их назвали «биологическими» углеводородами. Они преимущественно имеют цепочки из нечетного числа атомов углерода (цепочки из 21 атома, из 23 атомов и т. д.). Исследователи обнаружили, что набор парафинов в изучаемом ими метеорите напоминает те парафины, которые входят в состав масла и молодых осадочных пород, содержащих остатки живых организмов. Более того, они склонны утверждать, что одна составляющая вещества метеорита родственна холестерину, который содержится в крови. Ученые были абсолютно уверены в том, что метеорит свидетельствовал о жизни. Один из них сказал: «Мы уверены, что где бы ни возник этот метеорит, там было что-то живое».

Один из исследователей углистых хондритов Сислер писал следующее: «Я обнаружил или следы органической жизни, или микроорганизмы — или то, что кажется микроорганизмами, живыми или мертвыми, — почти во всем, что я исследовал». За этими словами был огромный, кропотливый труд. Ученый исследовал два образца метеорита Мюррей. Прежде всего он проводил стерилизацию поверхности метеоритов. Для этого он облучал метеориты интенсивным ультрафиолетовым излучением в течение 10–12 часов. Причем каждый образец облучался со всех сторон. Затем образец очищали от загрязнения, которое могло быть на его поверхности. Для этого образец погружали в перекись водорода. Но и это не все. После этого образец в течение некоторого времени держали над пламенем и опускали в стерилизующий раствор. Наконец, образец помещали в стерильную камеру.

К камере предъявлялись очень серьезные требования. Внутри камеры все, включая даже воздух, должно было быть абсолютно стерильным. В камере жили мыши. Это делалось для контроля опытов. Мыши были лишены микрофлоры и даже безвредных кишечных бактерий, которые живут в организме человека. Если же в камеру попадало какое-либо загрязнение, то оно сразу проявлялось в содержимом их кишечников. К стенкам каждой камеры (бака) были прикреплены резиновые перчатки. Это позволяло работать внутри камеры, не вступая в непосредственный контакт с ее стерильным содержимым.

Образцы метеорита ученый измельчал в ступке. Затем он вводил в организм нескольких мышей экстракт вещества из внутренних частей образца. На самих мышей это не действовало. Но когда это вещество было помещено в прозрачную жидкость, которая была богата питательными веществами, то эта жидкость иногда становилась мутной. Часто это происходило только через несколько месяцев. Поэтому ученый сделал вывод, что искры жизни, которые содержались в метеоритах, каким-то образом повреждаются и на их восстановление требуется много времени. Бактерии под микроскопом напоминали короткий штопор. Их не удавалось отождествить с каким-нибудь из видов земных бактерий, но ученый не сделал вывода, что они не похожи ни на что, на Земле.

Опыты показали, что метеоритные бактерии могут расти как в отсутствие кислорода, так и при его наличии. Так ведут себя и некоторые земные бактерии. Их называют анаэробами.

Надо отдать должное работам, которые провел с метеоритами еще в 1932 году Липман. Он работал в США, но был выходцем из России. Он занимал должность профессора физиологии растений в Калифорнийском университете в Беркли. Липман из распыленных обломков каменных метеоритов культивировал различные бактерии. Это были кокки, цепочки кокков, цепочки палочек и цепочки сосискообразных бактерий. Ученый признавал, что они напоминают земные бактерии. Но он не исключал того, что они могли быть занесены из космоса.

При полете метеорита через земную атмосферу повышается его температура. Многие считали, что она становится настолько высокой, что все живое в метеорите должно быть убито. Но на самом деле нагревается не весь метеорит, а только его тонкий наружный слой. Внутри он остается холодным. Так, когда в Колби, штат Висконсин, в летнюю жару упал каменный метеорит, то на его поверхности образовался иней.

На основании проведенных исследований Липман сделал вывод, что каменные метеориты «приносят вместе с собой откуда-то из космического пространства некоторое количество живых бактерий, возможно в спорах». Но с выводами Липмана согласились далеко не все. Как всегда громче всех критиковали ученого те, кто меньше всего в этом понимал.

Видимо, Сислер учел печальный опыт нападок на Липмана, хотя с тех пор и прошло более тридцати лет. Сислер поступал мудро. Он обезоруживал противников собственными сомнениями. Он выказывался в том плане, что нельзя исключить возможность загрязнения. Он также признавал, что необходимо провести большое число опытов, для того чтобы установить статистически, действительно ли организмы, имеющиеся внутри метеорита, являются результатом заражения. Но сам он верил в то, что метеориты содержали в себе жизнь.

Мы уже говорили о том, что метеориты исследовали специалисты по нефти. Оставался нерешенным вопрос, как образовались «минеральные масла». Еще в начале прошлого века была высказана мысль, что они могли образоваться каким-то путем под действием высокой температуры и давления. Полагалось, что на большой глубине, под землей это было реальным. Но как именно это произошло, оставалось неясным. Правда, в наше время считают, что нефть образовалась каким-то образом из осадочных пород, богатых остатками морских организмов.

Очень любопытно, что в вопросах происхождения нефти ученые дошли до полного абсурда. Так, директор Ботанического сада штата Миссури ботаник, член Национальной академии наук доказывал, что голубая дымка смоляных испарений, которые выделяют растения, и особенно хвойные деревья и полынь, поднимается достаточно высоко для того, чтобы там видоизменяться под действием солнечного ультрафиолетового излучения и затем вместе с дождем выпадать на землю. Так в отложениях в устьях рек должна бы скапливаться нефть. Это, конечно, смело, но нереально.

В Новой Зеландии ученые тщательно обследовали метеорит, который ранее упал в Мокойе. Они обнаружили в нем наличие пуринов. Это важно потому, что два пурина — аденин и гуанин — служат для переноса кода жизни. Ученые не обнаружили аминокислот, которые являются вездесущими веществами жизни. Это доказывало, что образец не был заражен на земле.

На основании проведенного анализа ученые пришли к выводу, что соединения, которые были обнаружены в метеорите Мокойя, или были продуктами разложения угасшей жизни или образовались небиологическим путем. Было высказано предположение, что ядро комет при столкновении с Землей могли обогащать земную поверхность на ранней стадии развития Земли различными химическими соединениями. Дело в том, что орбиты комет пересекают пояс астероидов, который заполнен веществом. Поэтому столкновение комет с этим веществом происходят часто. Так астероиды могут пополняться веществом из комет.

Ученые исследовали образцы четырех углистых хондритов и при этом во всех образцах обнаружили микроскопические частицы, которые были очень похожи на ископаемые водоросли. Но это не были в точности водоросли. Они не были, как говорят специалисты, идентичны водорослям. Еще в двух других образцах каменных метеоритов, которые исследовались для сравнения, таких частичек («организованной материи») обнаружено не было (рис, 45). Исследователи описали несколько типов «форм жизни», которые были ими обнаружены в образцах углистых метеоритов. Разница в этих объектах была в следующем. Объекты первого типа были маленькие и круглые. Стенки у них были двойные. Внутри этих стенок вещество окрашивалось так же, как и в некоторых видах клеток. Объекты второго вида были похожи на объекты, описанные выше, но некоторые из них были покрыты иголочками или имели какие-либо другие отростки. Объекты третьего типа были цилиндрическими. Объекты четвертого типа представляли собой шестиугольники с цилиндрическими выступами с трех сторон. Вначале был виден только один из выступов. Кстати, этот тип был более всего похож на живые бактерии.




Рис. 45. «Организованный элемент», наблюдавшийся Клаусом и Нэджи в метеорите Оргей («Nature», 192, 595).


В разных метеоритах эти типы «форм жизни» проявлялись по-разному. Так, в метеоритах Оргей и Ивуна эти формы встречались очень часто. В метеоритах Мюррей и Миген они встречались реже. Эти формы не напоминали никаких из известных частиц минералов. Более того, были обнаружены некоторые необычные примеси — хорошо известные формы земных бактерий и водорослей. Специалисты считают, что они имеют метеоритное происхождение. За исключением единственного экземпляра пятого типа все обнаруженные формы жизни были похожи на жгутиковых — панцирных и хризомонад. Первые из них являются растениями. Но они живут в воде. Ни одна из этих форм не живет в почве. Поэтому нельзя было опасаться, что эти формы жизни могли появиться в метеорите в результате загрязнения. Кроме того, метеориты упали на земную поверхность в разных местах. Метеорит Оргей — на юге Франции, а метеорит Ивуна — в безводном тропическом районе Центральной Африки. Слишком разные внешние условия, чтобы полагать, что оба метеорита были загрязнены формами жизни абсолютно одинаковыми. Это исключалось. Поэтому исследователи сделали вывод, что эта организованная материя является «возможными остатками организмов».

После этого и другие исследователи внимательно стали изучать выявленные в метеоритах формы жизни. Так, сотрудник Британского музея в Лондоне Роберт Росс исследовал осколки метеорита Оргейль, которые хранились в музее. Росс утверждал, что в этих осколках он обнаружил формы жизни первого типа, которые были описаны выше. Ученый также сообщил, что два элемента под микроскопом имели грибовидную форму. Кроме того, Росс обнаружил объекты, которые напоминали разрушенные оболочки спор. Это был очень весомый аргумент в пользу существования жизни на других небесных телах.

Этой проблемой занимались и другие ученые. Так, американец Фрэнк Стэплин исследовал метеорит Оргей методом пыльцевого анализа. Этот метод используется при изучении образцов осадочных пород, которые извлекают из земных недр. Зернышки ископаемой пыльцы несут в себе информацию о возрасте породы, а также о том климате, который был когда произошло осаждение. Стэплин обнаружил тельца, которые по размеру, строению, и сопротивлению действию кислот внешне напоминали некоторые одноклеточные водоросли. Здесь пересекаются интересы тех, кто ищет жизнь во Вселенной, с интересами исследователей нефтяных месторождений. Именно последние очень дотошно исследовали зернышки пыльцы, решая проблему происхождения нефти и места нахождения нефтяных место-рождений. Они хорошо изучили зернышки пыльцы тех осаждений, которые имеют возраст менее 600 миллионов лет. Те же формы жизни, которые Стэплин обнаружил в метеоритах, отличались от ранее известных форм жизни. Поэтому исследователь выделил два совершенно новых рода растений. Кстати, и советский ученый Б В. Тимофеев, работавший в Ленинграде над проблемой разведки нефтяных месторождений, обнаружил ископаемую пыльцу этого рода. Более того, Тимофеев исследовал углистый хондрит, который упал в районе Одессы в 1889 году. Это был углистый хондрит. Методика исследования заключалась в следующем. Образец метеорита помещали в центрифугу, которая позволяла разделить вещество метеорита по весу. Затем анализировались отдельно разные по весу фракции. При этом в более легкой фракции метеоритного вещества (углистого хондрита) были обнаружены круглые объекты, которые очень были похожи на самую древнюю из известных форм водорослей Profosphaeridae. Конечно, они не были одной из форм земных водорослей.

ЧАСТЬ ЧЕТВЕРТАЯ