ЦИВИЛИЗАЦИИ
ЖИЗНЬ В КОСМОСЕ
Жизнь возникла на определенном этапе эволюции Вселенной. Она не могла возникнуть ни раньше и ни позже. Не возникнуть вообще она также не могла. Эволюция Вселенной определялась, в частности, химической эволюцией, то есть преобразованием химических элементов. Причем это преобразование было не случайным, а весьма определенным, прогрессивным.
Прогрессивность эта состоит в том, что в результате эволюции образовывались все более сложные элементы: вначале были только элементарные частицы (протоны, нейтроны, электроны и др.), затем начали образовываться ядра химических элементов (прежде всего легких; так, протон — это уже готовое ядро водорода); затем ядра объединялись со свободными электронами и образовывали нейтральные атомы. И только после этого в определенных условиях атомы объединились в молекулы. Мы уже говорили, что вначале на определенном этапе после Большого Взрыва образовались только легкие химические элементы. Только потом по истечении весьма продолжительного периода межзвездная среда стала «засоряться» тяжелыми химическими элементами. Они образовались как шлаки при термоядерном выгорании легких химических элементов внутри звезд. При взрывах Сверхновых эти шлаки (тяжелые химические элементы) звезды стали сбрасывать с себя как ненужную шубу. Звезды второго поколения, которые образовались (и продолжают рождаться) из межзвездной среды, уже засоренной тяжелыми элементами, имеют другой химический состав, более разнообразный. Планеты этих звезд образовались практически в едином процессе образования своих звезд, и их химический состав также определяется составом межзвездной среды, из которой они образовались.
Химическая эволюция шла не только по пути усложнения систем (от элементарных частиц к молекулам), что само по себе прогрессивно, так как более сложные образования предоставляют большие возможности при дальнейшем построении Мира. Прогрессивность химической эволюции состояла и в том, что на каждом новом этапе образовывались системы, внутри которых составляющие их частицы удерживались вместе все меньшими силами. Так, элементарные частицы (протоны и нейтроны) удерживаются внутри ядра самыми сильными из всех известных нам сил — ядерными силами. Поэтому при расщеплении ядра и происходит выделение огромного количества внутренней энергии (термоядерной). Вызвать термоядерную реакцию очень непросто, необходима огромная энергия, чтобы ядро расщепить. Другими словами, ядра — очень устойчивые системы (если не считать ядра некоторых тяжелых элементов — но это особый вопрос). Из-за высокой устойчивости, стабильности ядер они являются неизменными, консервативными, трудно поддающимися изменениям. Поэтому они — плохой строительный материал для дальнейшего творения Мира. Совсем другое дело атомы, образованные из этих ядер. Они цементируются как единые системы, имеющие свои определенные свойства, свое лицо, значительно меньшими, нежели ядерные, силами. Разорвать атом на электрон и ядро значительно легче, чем разорвать (расщепить) ядро. Поэтому атомы более мобильны. Они без большого труда могут превращаться в положительно заряженные ионы и отрицательно заряженные электроны. Возможен также процесс соединения нейтрального атома и свободного электрона. Его называют прилипанием. При этом образуется отрицательно заряженный ион. Таким образом, при переходе от ядер к атомам происходит, с одной стороны, усложнение системы (атомы более сложны, чем ядра, входящие в их состав), а с другой — новые системы удерживаются как единое целое значительно меньшими силами. Дальнейший этап эволюции — это преобразование атомов в молекулы. Здесь налицо как усложнение системы (строительных кирпичей), так и уменьшение сил, необходимых для удержания частиц, составляющих молекулы (то есть атомов), вместе.
Таким образом, химическая эволюция во Вселенной происходила с соблюдением, если можно так сказать, трех принципов: 1) сложность структур постепенно увеличивалась, 2) энергия, которая обеспечивала целостность этих структур (систем), постепенно уменьшалась и 3) число комбинаций из этих структур или, другими словами, число типов также постепенно увеличивалось.
Продолжая цепь элементарные частицы — ядра — атомы — молекулы, мы должны включить в нее очередное звено — огромные молекулы (макромолекулы) живого вещества. На это звено распространяются те же главные принципы, что и на всю предшествующую химическую эволюцию: система (структура) усложнилась, причем значительно; энергия связи, удерживающая обычные молекулы, или, как их называют, молекулы-мономеры, в единой структуре — макромолекуле, уменьшилась, поскольку новые связи являются невалентными, а возможности образованных макромолекул стали неизмеримо больше. Эти возможности стали большими потому, что макромолекулы могут очень легко перестраиваться, так как они цементируются не очень большими силами. В то же время этих сил достаточно, чтобы макромолекулы не разваливались самопроизвольно. Именно этой мобильностью макромолекул определяются все важнейшие процессы жизнедеятельности и размножения клеток.
Любопытно, что к химической эволюции применяется та же терминология, что и к эволюции живого вещества. Ее рассматривают как процесс, «который осуществляется в результате естественного отбора наиболее устойчивых к дальнейшему объединению частиц в изменяющихся внешних условиях». Поэтому химическая эволюция является процессом прогрессивным.
Весь процесс эволюции, образования все более сложных структур со все большими возможностями происходит не всегда монотонно. Анализ показывает, что постепенное усложнение вещества во Вселенной происходит в медленно меняющихся процессах, тогда как «фиксация» вновь образовавшегося вещества, которое должно служить стройматериалом будущего развития, эволюции, происходит только при особых условиях, которые напоминают закаливание, то есть только тогда, когда внешние условия изменяются быстро, резко. Специалисты этот этап эволюции так и называют — «закалкой» состава. Это можно представить себе в виде непрерывной поточной технологической линии, на которой происходит непрерывное преобразование вещества от самой простой структуры до самой сложной. Но в определенных местах этой линии поставлены устройства закаливания, резко меняющие внешние условия. То вещество, которое оказалось в данном месте, будет зафиксировано, то есть далее не будет превращаться в более сложную структуру, а останется самим собой.
Так мы подошли к очень важному выводу, результату, может быть самому главному не только в проблеме поиска и эволюции внеземных цивилизаций, аив проблеме понимания всего мироздания. Он состоит в том, что биологическая эволюция — это только определенное, но необходимое, обязательное звено общей прогрессивной эволюции во Вселенной. Это значит, что прогрессивная эволюция на Земле это только песчинка в общей прогрессивной эволюции во Вселенной, которая началась не с появлением жизни, а значительно раньше, с момента Большого Взрыва. Даже когда биологическая эволюция прекратится, прогрессивная эволюция в масштабах всей Вселенной будет продолжаться, подчиняясь единому, несомненно существующему закону. Поэтому можно не сомневаться в том, что элементарные частицы, из которых состоят ядра, а также молекулы несут на себе печать всего предшествующего развития Вселенной, информацию о том, как они образовались и «закалились». Более того, даже мы с вами несем в себе воспоминания, историю не только эволюции биологической, но и всей прогрессивной эволюции вещества в расширяющейся Вселенной от момента Большого Взрыва! В это трудно верится, но это так. Подчеркнем еще раз, что биологическая эволюция — это только этап общей прогрессивной эволюции Вселенной.
Может ли при этом идти речь об уникальности жизни на Земле, об особых маловероятных обстоятельствах ее возникновения? Конечно, нет. Об этом говорят не только закономерности прогрессивной эволюции во Вселенной, описанные выше, но и обнаружение в космосе (в межзвездных облаках, метеоритах) сложных органических молекул. Эти органические молекулы несут в себе информацию об эволюции межзвездных облаков или оболочек холодных звезд, где они образовались в результате прогрессивной химической эволюции.
Роль этих сложных органических молекул можно понять исходя из схемы возникновения, образования жизни. На первом этапе эволюции жизни должны присутствовать начальные, исходные, или, как говорят специалисты, стартовые, соединения. Это СН4, Н2О, NН3, СО и др. Затем из них образуются биологические простые молекулы (мономеры). Это аминокислоты, азотистые основания и др. Затем из мономеров образуются сложные биологические молекулы — полимеры. Это нуклеиновые кислоты (ДНК и РНК) и белки. Нуклеиновые кислоты состоят из нуклеотидов, а они, в свою очередь, состоят из фосфата, азотистых оснований и сахара. Белки состоят из 28 веществ, а именно: двадцати аминокислот, пяти оснований, двух углеводов и одного фосфата.
Какие звенья из этой схемы обнаружены в космосе? Впервые биологические молекулы космического происхождения были обнаружены в Мерчисонском метеорите, который упал в 1969 году в Австралии. Это были белковые аминокислоты (всего шесть). Одновременно в том же метеорите содержались и другие 12 аминокислот, которые не встречаются в белках. Это доказывает, что все аминокислоты, обнаруженные в метеорите, имеют космическое происхождение. Собственно, возможность их космического происхождения доказывается даже лабораторными экспериментами. Когда на смесь, состоящую из аммиака, метана и паров воды, воздействовали ультрафиолетовым излучением, потоком энергичных электронов или же сильно увеличивали ее температуру, то в ней образовывались аминокислоты и углеводороды и одно из азотистых оснований нуклеиновых кислот — аденин.
В атмосферах холодных звезд, комет и межзвездных облаках нейтрального водорода были обнаружены простейшие двухатомные радикалы и в еще больших количествах (в атмосферах холодных звезд) многоатомные молекулы (HCN, С3N, НС3N, СН4, NН3 и др.). Было доказано экспериментально, что такие соединения могут образовываться в результате химических реакций в протопланетной околосолнечной туманности. В составе кометы Когоутека (1973 год) были обнаружены молекулы синильной кислоты и метилциана. В облаках межзвездного газа также были обнаружены сложные органические молекулы, содержащие до 11 атомов. Они обнаружены и за пределами нашей Галактики.
Особый интерес представляют метеориты, которые называют углистыми хондритами. Хотя их по массе и немного (всего около 5 %), но они важны своим происхождением: их состав ближе всего к тому первичному веществу, из которого образовались планеты земной группы. Другими словами, они — в определенной мере ключ к пониманию образования жизни на Земле и происхождения органических ископаемых.
Исследования показали, что в углистых хондритах имеются следующие органические соединения: алифатические и ароматические углеводороды, гетероциклические азотистые основания (пурины, пиримидины, порфирины и др.), сахара и большое разнообразие аминокислот. Более 90 % органики составляет похожий на сажу ароматический полимер. При выделении органических веществ из метеоритов очень важно доказать, что они не привнесены с Земли. Так, у описанного выше метеорита Мерчисон в 1971 году были выделены 18 аминокислот, больше половины которых практически никогда не встречались в земных условиях. Это доказывало их «небесное» происхождение. Можно, конечно, предположить, что метеориты были засорены органическими соединениями в космосе. Исследования процессов в околосолнечной протопланетной туманности при ее остывании показали, что там образуется большое количество многоатомных углеводородов и других органических соединений таких же, как и в метеоритах. Таким образом, было доказано, что органические вещества в углистых хондритах имеют не биологическое происхождение, а возникли в результате химического синтеза в допланетной околосолнечной туманности.
Был изучен молекулярный состав межзвездной среды. Это делается на основании спектрального анализа излучения. Удалось исследовать по межзвездным линиям поглощения соединения СН, CН+. Заатмосферные измерения позволили проводить анализ линий поглощения и в инфракрасном, и в ультрафиолетовом участках спектра.
И. С. Шкловский теоретически показал, что свободные радикалы должны излучать в радиодиапазоне. В частности, длина волны радиоизлучения ОН равна 18 сантиметрам. В 1963 году эти выводы были подтверждены: на фоне непрерывного спектра ярчайшего космического радиоисточника Кассиопея А были обнаружены в поглощении радиолинии ОН, находящегося в межзвездной среде. Впоследствии были обнаружены не только линии поглощения ОН, но и такие же линии излучения ОН. Это излучение оказалось очень интенсивным и имело некоторые другие весьма экзотические свойства (переменность интенсивности излучения во времени, поляризация). Некоторое время считалось, что оно представляет собой радиосигналы внеземной цивилизации. Но впоследствии все эти свойства удалось объяснить естественными причинами.
Интенсивность излучения ОН очень велика потому, что эти молекулы находятся в сильно неравновесном, перевозбужденном состоянии. В таких условиях они способны излучать когерентно, то есть в фазе. При этом происходит усиление радиоизлучения. Такой эффект на радиоволнах был изучен в лабораторных условиях. Установки, позволяющие получать такое когерентное излучение в лабораторных условиях, называются мазерами (в отличие от лазеров, которые дают излучение в оптическом диапазоне). Значит, межзвездные молекулы ОН являются естественными мазерами. Они функционируют в условиях, связанных с самой ранней стадией эволюции звезд и планет. Их изучение может дать информацию о процессах на этапе рождения звезд и планет. Исследование излучения в радиодиапазоне на строго определенных длинах волн (другими словами, изучение радиолиний) позволило открыть многие органические молекулы в межзвездной среде. Среди них формальдегид (Н2СО), углеводороды, спирты, кислоты (синильная, изо-циановая, карбоновая), амиды кислот, амины, нитриты, простой и сложный эфиры. Были обнаружены молекулы, состоящие из 11 атомов, имеющие массу в 123 атомных единиц массы. Это HC9N (цианоктатетраин). Молекулярные облака нельзя исследовать с помощью видимого света, так как содержащаяся в них пыль поглощает свет и поэтому они воспринимаются как «черные» облака. Только радиоизлучение молекул приносит нам информацию о них. Водород в этих облаках находится в молекулярном состоянии, поэтому мы не регистрируем от них радиолиний с длиной волны 21 сантиметр (от атомарного водорода). Излучение радиолиний молекул межзвездного газа дает информацию не только о наличии молекул, но и о многом другом — кинетической температуре, плотности молекул, характере турбулентных движений. Можно даже определить напряженность магнитного поля в молекулярных черных облаках. Черные (молекулярные) облака являются самыми массивными в нашей Галактике. Плотность молекул увеличивается по направлению к его центру. Сложные молекулы локализуются в центре облака. Отсюда исходит радиоизлучение, возбуждаемое молекулами ОН и Н2О и имеющее мазерный характер.
Масса органических молекул в облаках может составлять в нашей Галактике порядка десяти масс Солнца. Масса органических соединений планет, вероятно, еще больше.
Таким образом, в последнее время была установлена широкая распространенность органических соединений в нашей Галактике, которые являются необходимым условием возникновения жизни. Ведь из смеси NH3, Н2, Н2О и СН4 при соответствующих условиях (наличии источников энергии) могут образовываться аминокислоты. Это происходит в молекулярных черных облаках. Так, в Стрельце В2 был открыт метанимин и метиламин. Соединение последнего с муравьиной кислотой дает аминокислоту — глицин.
Известны этапы эволюции жизни:
1) начальные молекулярные соединения (СН4, Н2О, NH3, СО и др.),
2) биологические мономеры (аминокислоты, азотистые основания и др.),
3) биополимеры,
4) доклеточная организация,
5) клетка.
Нуклеиновые кислоты (ДНК и РНК) и белки (то есть полимеры более простых веществ) являются биологическими молекулами. Нуклеиновые кислоты построены из нуклеотидов. Последние состоят из сахара, азотистых оснований и фосфата. Белки же состоят из 20 видов аминокислот. Все разнообразие известной нам жизни состоит из 28 веществ: 20 аминокислот, 5 оснований, 2 углеводов, 1 фосфата.
Рассмотренные выше данные говорят о том, что биологические молекулы могут образовываться в космосе (и образуются!).
Матричный синтез белков происходит по такой схеме. План построения клеточных белков хранится в молекуле ДНК, которая является своего рода закодированной инструкцией. В белки входят 20 обязательных аминокислот. Можно сказать, что язык ДНК состоит из четырех «букв-оснований» и из 20 «букв» (то есть аминокислот). Значит, каждая буква (аминокислота) кодируется триплетом оснований. На последовательности оснований некоторого участка ДНК происходит синтез молекул одноцепочечной рибонуклеиновой кислоты (РНК). Этот процесс называется транскрипцией. На образованной РНК синтезируется белок. Далее РНК переносится на рибосомы, то есть на клеточные органеллы в цитоплазме клетки (именно здесь происходит образование белков). На этом этапе и происходит образование белковой молекулы.
Известно, что все живое на Земле связано с определенным химическим языком — генетическим кодом. Именно он определяет индивидуальное развитие и свойства каждого организма. Генетическая информация записана в нуклеиновых кислотах. Свойства данного организма зависят главным образом от белков. Связь нуклеиновых кислот с белками и осуществлена с помощью генетического кода.
До недавнего времени считалось, что генетический код для всех без исключения живых систем на Земле один и тот же, то есть что он является универсальным. Но не так давно были открыты системы, у которых генетический код отличается от универсального. Это митохондрии. Они присутствуют во всех клетках, имеющих ядро, и обеспечивают энергией живую клетку. В митохондриях существует собственная ДНК. В коде, который используют митохондрии, тройка нуклеотидов кодирует не ту аминокислоту, что в универсальном коде, а другую.
Это открытие наводит на далеко идущие мысли, имеющие непосредственное отношение к проблеме внеземных цивилизаций. В. И. Иванов на симпозиуме в Таллине в 1981 году высказал идею, что нынешний генетический код не возник сразу, а ему предшествовал более простой код (на более ранней стадии происхождения жизни). Этот первичный код не исчез окончательно, а сохранился в некоторых современных белково-нуклеиновых комплексах. Но он не играет роль генетического кода, а используется для точного узнавания нуклеиновых кислот и белков.
Это наталкивает на мысль, что и на других планетах в основе белково-нуклеиновой жизни лежит такое же стерео-химическое соответствие нуклеиновой кислоты и белка, то есть первичный код белково-нуклеинового узнавания. Из этого первичного кода образовался настоящий генетический код. Он не должен быть точно таким же, как на Земле, или, другими словами, не обязательно генетический код будет единым на всю Вселенную. Но он будет различаться в разных местах Вселенной только незначительно.
На семинаре в Таллине в 1981 году В. С. Троицкий высказал очень любопытную гипотезу о возникновении и развитии жизни во Вселенной. Суть ее базируется на описанной выше прогрессивной эволюции (как химической, так и биологической). Согласно этой гипотезе жизнь возникла как закономерный этап эволюции Вселенной как целого, причем это произошло однократно и только на тех планетах, которые к этому были готовы. На вновь образующихся планетах впоследствии жизнь не возникала таким же путем. Другими словами, В. С. Троицкий предлагает считать, что жизнь во Вселенной возникла в результате одноразового взрывного процесса. Если это на самом деле было так, то получается следующая хронология всей истории Вселенной. Первые пять миллиардов лет после Большого Взрыва ушли на эволюцию от элементарных частиц до макромолекул. По истечении следующих 5 миллиардов лет на подходящих планетах появились организмы, и только после этого начался процесс эволюции социальных структур. Если эта гипотеза правильна, то цивилизации на других планетах во Вселенной находятся примерно на том же уровне развития, что и наша. Конечно, темпы их развития могут быть разными. Это зависит и от физико- химических условий в местах их обитания, и от других факторов, определяющих законы развития цивилизаций. В этом случае не исключено, что мы находимся в числе одних из первых, а может, и являемся самыми первыми. Доказательств этому нет. Но над этим стоит задуматься, тем более, что многие в наше время очень настойчиво ждут (и даже требуют) «космического чуда», то есть существования сверхцивилизаций, которым под силу летать со скоростями, почти равными скорости света, которые могут сдвигать со своих мест звезды и т. д. Тот факт, что космического чуда мы не наблюдаем, эти ученые однозначно расценивают как отсутствие внеземных цивилизаций вообще. На самом деле научный анализ ситуации показывает, что подход к этой проблеме должен быть более трезвым, более умеренным.
Математический биолог Н. Рашевский считает, что принципиально может существовать сто миллионов биологических видов. На Земле за всю ее историю существовало четыре миллиона видов. Не реализованных на Земле остается еще 96 миллионов видов. Но невозможна ситуация, при которой на другой планете будут развиваться только такие биологические виды, которых не было и нет на Земле. Это несмотря на то, что резерв не использованных на Земле видов большой — 96 миллионов. Выбор видов происходит случайным образом. Если рассчитать по всем правилам математики вероятность того, что хотя бы один из видов на Земле будет такой же, как и на какой-либо планете, то окажется, что эта вероятность практически равна единице. То есть мы должны встретить на другой планете такой же вид, какой существует на Земле. Сколько всего видов может повториться? Было показано, что должно совпасть на двух планетах 160 000 видов. Значит, если мы на другой планете встретим жизнь, то 160 тысяч видов живых существ для нас окажутся знакомыми, такими же как и на Земле. Специалисты этот результат формулируют так: «Между двумя биологиями нет различий, которые можно бы назвать существенными». Таким образом, не надо преувеличивать роль разнообразия биологических видов во Вселенной и думать, что мы встретим в других мирах одних только чудовищ.
ЖИЗНЬ, РАЗУМ, ЦИВИЛИЗАЦИИ
Когда речь идет о земных цивилизациях, то каждый в той или иной мере знает, что под этим понимается. Но когда мы ищем внеземные цивилизации, то возникает масса принципиальных вопросов. Среди них, прежде всего, такие: что собой представляют отдельные индивидуумы внеземной цивилизации как чисто внешне (рост, форма, способ передвижения, органы чувств и т. д.), так и в смысле их действий, что собой представляют сообщества индивидуумов, какую жизненную философию они исповедуют (агрессивны, миролюбивы, жестоки, милосердны и многое другое), какими техническими средствами они располагают и т. д.
Сегодня мы пока не знаем ни одной внеземной цивилизации и не можем сослаться в наших представлениях на осязаемые факты. Это может привести к мысли, что как отдельные индивидуумы, так и цивилизации, в которые они входят, могут быть самыми различными или даже любыми. Но на самом деле это не так. Мы можем составить себе научное представление о жизни во Вселенной, в том числе и о разумной жизни, на основании того, что мы уже знаем о самой Вселенной, о ее строении, эволюции, химическом составе, органических и биологических молекулах в космосе и др. Это возможно потому, что вся та часть Вселенной, о которой мы имели информацию, подчиняется одним и тем же законам, которые нам известны. Современной астрофизикой установлено, что на пространственных масштабах в миллиарды световых лет формы материи во Вселенной одинаковы. В объеме с такими масштабами содержится более 10 миллиардов галактик, а в каждой из них содержится более 10 миллиардов звездных систем. Это значит, что ни Земля, ни Солнечная система не могут считаться какими-то особыми, уникальными объектами. Они не являются особыми не только в смысле физических условий, но и в смысле возникновения и развития жизни. Ведь не вызывает сомнения, что жизнь возникла в результате строго закономерного физико-химического процесса. И хотя мы сегодня и не знаем, как конкретно это произошло, но ясно, что начало всего процесса — это химическая эволюция.
Но прежде чем рассмотреть конкретно, что мы знаем об этом процессе применительно ко всей Вселенной, выясним подробнее, что такое внеземная цивилизация.
Во-первых, цивилизация должна представлять собой коллектив индивидуумов, особей, а не быть единой биологической системой вроде молекулярного черного облака или же разумного океана (как в кинофильме «Солярис»).
Во-вторых, цивилизация должна состоять не просто из индивидуумов, но из разумных индивидуумов.
В-третьих, сообщество особей не просто должно быть коллективом разумных индивидуумов, но оно должно быть способно к постоянному и непрерывному прогрессу.
Именно третье условие выделяет цивилизации сообществ живых существ из просто сообществ, какими являются, например, сообщества животных (дельфинов). Ведь для того, чтобы сообщество представляло собой цивилизацию, оно должно быть способным к научному познанию природы, а также к производству. Только так оно может обеспечить постоянный и непрерывный прогресс.
Многие ученые разных профилей пытались дать определение, что такое жизнь, разум, цивилизация. Мы не будем углубляться в эти самые фундаментальные вопросы, чтобы не уйти далеко от темы нашего разговора. Но кратко все же поясним эти понятия, прежде всего те их стороны и оттенки, которые важны для проблемы поиска внеземных цивилизаций. В. С. Троицкий, возглавляющий советскую комиссию по внеземным цивилизациям, дал им такое определение:
«Цивилизация — это общность разумных существ, использующих обмен информации, энергии, массы для выработки действий и средств, поддерживающих свою жизнь и прогрессивное развитие».
Второй ведущий специалист по проблеме внеземных цивилизаций Н. С. Кардашев дал более развернутое, конкретизированное определение цивилизации, которое в сущности совпадает с определением В. С. Троицкого:
«Цивилизация — высокоустойчивое состояние вещества, способного собирать, абстрактно анализировать и использовать информацию для получения качественно новой информации об окружающем и самом себе, для самосовершенствования возможностей получения новой информации и для выработки сохраняющих реакций, степень развития цивилизации определяется объемом накопленной информации, программой функционирования и производством для реализации этих функций».
Нам представляется, что в обоих данных определениях цивилизации все понятно. Чтобы отдельный живой индивидуум мог существовать, он должен иметь сведения о себе (всех органах и системах своего организма) и об окружающей среде. Другими словами, он должен собирать и перерабатывать информацию как о себе, так и об окружающей среде. Должен происходить обмен информацией внутри самого индивидуума. Но здесь чрезвычайно важно заметить, что индивидуум не только получает информацию о внешней среде (то есть устанавливает светло ли, холодно ли и т. д.), но и передает информацию внешней среде, изменяя ее. Индивидуум не только сам приспособляется, адаптируется к соответствующим условиям внешней среды, но и изменяет саму внешнюю среду так, чтобы обеспечить оптимальные условия своего существования. Если пользоваться научной терминологией, то все те изменения, которые производит человек в окружающем его мире вследствие своей научной и производственной деятельности, есть не что иное, как передача информации от человека (точнее, земной цивилизации) внешней среде. Собственно, эта деятельность сообщества разумных живых существ и позволяет им обеспечить постоянный и непрерывный прогресс. Иначе это сообщество не может называться цивилизацией.
Говоря о цивилизациях, мы непременно говорим о сообществе, коллективе живых разумных существ. С одной стороны, понятия «жизнь», «разум» общеизвестны. С другой стороны, они наиболее общие, поэтому наиболее сложно их определить. Может возникнуть вопрос, почему к слову «разумных» надо (или точнее нелишне) добавлять слово «живых». Сейчас много пишут об умных машинах, то есть об искусственном разуме и даже интеллекте. В то же время само понятие жизнь может трактоваться очень широко.
Основными характеристиками живого является обмен веществ и энергией, а также способность к самовоспроизведению. Исходя из этого можно дать такое определение жизни (принадлежащее В. С. Троицкому):
«Жизнь — это высокоорганизованное самовоспроизводящееся состояние материи, поддерживаемое посредством обмена с внешней средой веществом, энергией и информацией, кодируемой состоянием молекул».
Последние слова относительно способа кодирования принципиально важны. Ведь даже на современном уровне развития нашей цивилизации можно говорить об искусственном создании такого самовоспроизводящегося состояния материи, которое соответствовало бы приведенному выше определению слова «жизнь» в том случае, если бы мы использовали для кодирования состояние молекул. Мы это сделать сейчас не можем. Но, возможно, это могут другие цивилизации или же сможем и мы в будущем, поднявшись на более высокий виток спирали технологического развития.
Таким образом, определение жизни — очень непростая задача. Это надо иметь в виду, когда мы строим планы поиска жизни во Вселенной. На данном этапе наших представлений мы должны исходить из таких основных характеристик живого (которые вошли в приведенное выше определение): обмен веществом и энергией с внешней средой; способность к самовоспроизведению; создание, хранение и переработка информации о внутренней и внешней среде с целью сохранения и поддержания всех характеристик живой системы; использование для кодирования информации состояния молекул.
Понятие «разум» настолько близко к понятию «цивилизация», что часть исследователей считают их синонимами, вместо слова «цивилизация» употребляют слово «разyм». Собственно, уже говорилось выше, что сущность разума характеризуется способностью к обмену информацией с внешней средой. Обратите внимание, что это не просто получение информации от внешней среды для целей лучшего приспособления, но и обмен информацией, ее переработка и использование при этом понятий. Коротко это звучит так:
«Разум — это способность живой материи к обмену информацией с внешней средой, кодируемой понятиями» (В. С. Троицкий).
Благодаря разуму живая система имеет возможность не только приспособляться (адаптироваться) к условиям внешней среды, но активно адаптироваться. Это значит, что разум непрерывно стремится к созданию все новых условий жизни и поддержанию развития. Это возможно только при постоянном прогрессе, который выражается в накоплении знаний и совершенствовании орудий взаимодействия с природой. Специалисты это определяют как стремление разума к неограниченной экспансии. Такой подход сейчас общепризнан. Последствия этого качества разума для возникновения и развития цивилизаций во Вселенной очень принципиальны: если где-либо во Вселенной возникла разумная жизнь, то через тот или другой промежуток времени она достигнет сколь угодно высокого уровня технологического развития. В этом и есть «экспансия разума». Но тут же возникает каверзный вопрос: не взорвет ли себя цивилизация (в прямом и переносном смысле) на определенном уровне технологического развития? Как мы убеждаемся на опыте развития собственной цивилизации, эти опасения небеспочвенны, хотя нельзя согласиться с теми, кто считает, что земной цивилизации осталось всего несколько десятков лет. Тем не менее такие опасения небеспочвенны, и это надо учитывать при решении проблемы продолжительности существования внеземных цивилизаций.
ЭВОЛЮЦИЯ ВНЕЗЕМНЫХ ЦИВИЛИЗАЦИЙ
Казалось бы, что логично было бы прежде чем приступать к поиску внеземных цивилизаций, определить — кого мы ищем. Это так, но нелогично затягивать поиск признаков существования внеземных цивилизаций и сигналов от них до того неопределенного срока, когда будет выяснено, с кем мы должны встретиться. Точнее можно сказать даже так: если не искать любую прямую или косвенную информацию о внеземных цивилизациях, то нельзя существенно продвигаться в понимании развития цивилизаций. Проблемы поиска и эволюции внеземных цивилизаций взаимосвязаны. Но несмотря на то, что сигналов от внеземных цивилизаций пока что не обнаружено, определенные результаты в исследовании развития внеземных цивилизаций уже имеются.
Обсуждая развитие цивилизаций, мы должны прежде всего договориться, что будем понимать под термином «цивилизация». Прежде всего, рассматривая внеземные цивилизации, мы будем считать, что жизнь на других планетах имеет ту же основу, что и на Земле, то есть белковую, а разум возник в результате эволюции. Таким образом, внеземные цивилизации, по нашим представлениям, функционируют и развиваются благодаря овладению технологическими процессами и состоят из отдельных разумных особей, составляющих такие сообщества. Уже приводилось определение цивилизации В. С. Троицким. Его формула очень ясная и в особых пояснениях не нуждается. На ее основе можно характеризовать цивилизации конкретными численными величинами и использовать их как показатель развития цивилизаций. Но кроме физических условий надо учитывать и социально-экономические закономерности, о которых мы можем сказать значительно меньше, чем о физических условиях.
Поэтому можно, следуя В. С. Троицкому, представить физические условия как некие рамки, за пределы которых цивилизации выходить при своем развитии не дано. Но внутри этих рамок возможны разные состояния цивилизации, определяемые прежде всего социально-экономическими закономерностями. Что же представляют собой эти рамки?
Одним из очевидных физических показателей цивилизации является плотность населения. Ясно, что она не может быть беспредельно большой. Специалисты в своих исследованиях внеземных цивилизаций принимают ее равной примерно 60 человек на один квадратный километр. При этом на одного человека приходится площадка размером 140 x 140 метров. Такая плотность населения была бы на Земле, если бы ее все население достигло 25 миллиардов и в расчет была бы принята вся поверхность нашей планеты, включая море, океаны, Арктику и Антарктику.
Второй очень важной характеристикой цивилизации является плотность энергии, которая потребляется цивилизацией. Дело в том, что мы не можем потреблять энергию бесследно. Фактически любой процесс, который мы называем потреблением энергии, является процессом ее преобразования из одного вида в другой. Процессы этого преобразования и используются человеком для своих нужд. Как известно, конечным этапом любых преобразований энергии является ее переход в форму тепловой энергии. Это значит, что чем больше плотность потребляемой энергии, тем больше нагревание среды, в которой мы обитаем. Правда, на определенной стадии развития цивилизации она становится способной выносить частично процесс потребления (преобразования) энергии за пределы среды обитания. В качестве примера можно указать на ту энергию, которую будет уносить за пределы среды обитания космический корабль. В этом случае тепловая энергия, полученная путем преобразования, не будет нагревать среду нашего обитания. Другой пример — радиосигналы или другие электромагнитные сигналы, посланные цивилизацией за пределы среды своего обитания, также не будут после преодоления этой среды повышать ее температуру. Чтобы различать эти ситуации, договорились разделить внутреннее потребление энергии (то есть в пределах среды обитания) от внешнего (за ее пределами), поскольку во втором случае среда обитания не нагревается.
Это вопрос далеко не праздный, поскольку произвольно изменять условия среды обитания цивилизация не может, если она хочет выжить в этой среде, а тем более если она хочет нормально функционировать. Нельзя рубить сук, на котором сидишь. Это, похоже, начинает понимать и наша цивилизация. Отсюда следует определенное ограничение на плотность энергопотребления в среде обитания, тот Рубикон, который переходить нельзя. Его несложно определить, если знать физические условия на данной планете. Применительно к Земле этот предел получается следующим образом. Для его оценки исходили из того, что изменять (увеличивать) температуру среды нашего обитания более чем на 0,1 % недопустимо. Температура Земли определяется всецело той энергией, которую она получает от Солнца. Значит, добавить к этой энергии более чем 0,1 % мы не имеем права, если хотим сохранить изменение температуры в допустимых пределах. Энергию, получаемую Землей от Солнца в единицу времени, то есть мощность, мы знаем. Она равна 2·1017 Вт. На один квадратный метр приходится 2·103 Вт/м2. Примерно половина этой энергии атмосферой Земли отражается обратно (это называют альбедо). 0,1 % от оставшейся мощности 103 Вт/м2 равен 1 Вт/м2. Это и есть то предельное значение энергии, которое наша цивилизация может позволить себе рассеять на каждом квадратном метре планеты. Но ни на йоту больше! А если понадобится рассеивать энергии больше, например когда появится почти даровая термоядерная энергия? Как быть тогда? Выход только один — рассеивать энергию за пределами обитания, то есть за пределами земной атмосферы.
Земля получает от Солнца 1017 Вт. Для поддержания своего существования наша цивилизация сейчас производит 1013 Вт. Это в пересчете на одного жителя планеты составляет 2,5 кВт. Если будет производиться энергии в 100 раз больше, то средняя температура на Земле увеличится на 0,75 °C.
Такие изменения температуры должны привести к очень существенным изменениям условий на Земле. Но есть еще одно (но не последнее) ограничение на развитие цивилизации: имеется в виду развитие ее вширь. Если представить себе, что цивилизация рассеяна на таком огромном пространстве, что любое сообщение в ее пределах достигается только в течение целой жизни ее особей, то, видимо, она не может управляться как единое целое. Другими словами, должен существовать некоторый пространственный предел размещения цивилизации. Специалисты считают, что прохождение информации из одного ее конца в другой не должно занимать более нескольких дней. Но дело не только в передаче информации (распоряжений, докладов и т. д.). В пределах всей цивилизации, если она является одним единым целым (а иначе она не является одной цивилизацией), необходимо обеспечить эффективное функционирование транспортной системы и системы энергоснабжения. Это также мыслимо только в том случае, если цивилизация занимает ограниченное пространство. Если рассматривать высокоразвитую цивилизацию, овладевшую очень большими скоростями транспортных средств (достигающими 0,1 % от скорости света), то вследствие указанных ограничений она не может занимать пространство с размерами больше 0,1 светового года. Сравнительно с размерами Галактики это небольшое расстояние. То есть можно сказать, что цивилизация вынуждена оставаться вблизи своей звезды и не может рассеяться по всей Галактике, так как в этом случае перестала бы быть единым целым, то есть собственно цивилизацией.
Основным показателем уровня развитости цивилизации является количество вырабатываемой ею энергии. По классификации Н. С. Кардашева, по этому признаку цивилизации можно делить на три ступени или типа. Первый тип составляют цивилизации, овладевшие энергией своей планеты. Второй тип составляют те цивилизации, которые овладели всей энергией своей звезды. То есть с помощью, например, сфер Циолковского — Дайсона эти цивилизации перехватывают все излучения своей звезды. К третьему типу отнесены цивилизации, которые овладели энергией своей галактики. Цивилизации второго и третьего типов являются сверхцивилизациями. Из приведенных выше пределов следует, что цивилизации третьего типа не могут существовать как единое целое.
Когда мы говорим об овладении энергией, то важно этот процесс характеризовать не только количеством этой энергии, но и ее качеством. Показателем этого качества является компактность преобразователей энергии. Чем компактнее источник энергии, тем более высокую технологию он позволяет применить. Ясно, что для обеспечения энергией космического корабля мы не можем разместить на нем гидроэлектростанцию. Поэтому важно не только количество той энергии, которой овладела цивилизация. Важен и вид получаемой энергии. Ясно, что химическая энергия позволяет создать более компактные источники энергии, чем тепловая. В свою очередь, овладение ядерной энергией позволяет получить еще более компактные источники энергии.
Земную цивилизацию, которая овладела химической энергией и сумела вырваться (пусть даже в единичных полетах) в космос, то есть достигла космических скоростей, можно отнести к I типу цивилизаций. Чтобы цивилизацию можно было отнести к II типу, она должна овладеть значительно большими скоростями (порядка 1 % скорости света), а это возможно только при овладении ядерной энергией. Тогда цивилизация сможет выйти за пределы своей планеты и расселиться вокруг своей звезды.
Из того, что было рассмотрено выше, ясно, что такая цивилизация может не только построить всенаправленную антенну-маяк, но и обеспечить ее необходимой энергией, чтобы излучать соответствующие сигналы в космос. Она может создать особо чувствительные антенны для приема слабых сигналов из космоса. Можно, конечно, теоретизировать о цивилизациях III типа, которые овладели скоростями передвижения, составляющими даже половину скорости света. Но если это и реально, то ненамного увеличит возможности цивилизации по сравнению с цивилизацией II типа. Проводя количественные оценки и прослеживая пути развития цивилизаций, мы вынуждены использовать данные, характеризующие нашу земную цивилизацию, поскольку других цивилизаций мы пока не знаем. На примере нашей цивилизации представим себе, как может происходить переход цивилизации на более высокую ступень развития, от цивилизации I типа к цивилизации II типа.
С овладением термоядерной энергией появится возможность создания космических транспортных средств со скоростью, составляющей 0,1 % скорости света. Такую скорость называют миллисветовой, то есть в тысячу (милли) раз меньше скорости света. Это позволит осваивать планеты и Луну, а также строить в космосе колонии или, как их раньше называл К. Э. Циолковский, «эфирные города». При дальнейшем усовершенствовании технологии преобразования энергии станет возможным на порядок увеличить транспортные скорости. И вообще космический транспорт станет основным потребителем энергии. Надо будет перевозить немало материалов, оборудования. Большие скорости транспорта — это большой расход энергии. Кроме строительства жилых колоний в космосе будут также создаваться промышленные комплексы и средства поиска внеземных цивилизаций и средств связи с ними. Но и здесь, за пределами своей планеты, наша цивилизация не может позволить себе бесконечно увеличивать энергопотребление (даже в том случае, если будет решен вопрос, откуда потреблять). Мы и здесь натыкаемся на некоторый порог, переход через который привел бы к недопустимому изменению новой среды обитания цивилизации — межпланетного пространства. Чтобы межпланетная среда осталась пригодной для функционирования в ней цивилизации, потребление энергии в ней не должно превышать 0,1 % от всей энергии, излучаемой Солнцем. Это составляет около 1024 Вт. Чтобы снять это ограничение, казалось бы, надо действовать по принципу матрешек, то есть вырываться еще дальше — в межзвездное пространство. Но при этом необходимы качественные изменения. Скорость космического транспорта должна увеличиться, а это равнозначно качественному увеличению источников энергии, они должны стать значительно более мощными и одновременно более компактными. В. С. Троицкий получил такие оценочные цифры, характеризующие распределение энергии по разным статьям, когда население нашей цивилизации увеличится примерно в 100 раз. На бытовые нужды цивилизации потребуется 1015–1017 Вт, примерно в сто тысяч раз больше энергии потребуется на работу радиомаяка, предназначенного для передачи сигналов другим цивилизациям. Потребуется также энергия для обеспечения научно-технических устройств космического масштаба. Она такого же порядка. Энергетические затраты на космический транспорт максимальны. Они достигают 1023 Вт. Транспорт понадобится как для расселения населения цивилизации на околосолнечные объекты, так и для перевозки стройматериалов и оборудования при сооружении научно-исследовательских установок, средств связи с внеземными цивилизациями и др. В. С. Троицкий в 1975 году говорил: «…уже сейчас нужно создавать проекты таких систем, чтобы представить себе объем труда и затрат энергии и материалов солнечной цивилизации для их строительства. Это сразу ограничивает буйство фантазии о безграничных энергетических возможностях высокоразвитой цивилизации и поможет выработке правильной стратегии поиска цивилизаций в нашей Галактике».
СКОЛЬКО ИМЕЕТСЯ ВНЕЗЕМНЫХ ЦИВИЛИЗАЦИЙ?
Считается, что жизнь может возникнуть и развиваться не только на планетах, но и на астероидах, холодных звездах и т. д. Но специалисты считают, что надо прежде всего рассматривать цивилизации, обитающие на планетах. Не только Солнце, но и другие звезды обладают планетными системами. Но далеко не на каждой планете создаются такие физико-химические условия, при которых возможно зарождение и развитие жизни. Одним из основных условий этого является соответствующая температура. Она должна находиться в пределах, обеспечивающих нормальное протекание химических реакций. При слишком низких и слишком высоких температурах нормальное протекание реакций невозможно, поэтому невозможно возникновение и развитие жизни. Кстати, очень высокие температуры для жизни более опасны, чем очень низкие. Известно, что простейшие виды бактерий и вирусов при температуре, близкой к абсолютному нулю, могут находиться в состоянии анабиоза. Для развития жизни должна быть обеспечена не только температура в некоторых пределах, но и не очень быстрые ее изменения. Очень резкие колебания температуры являются губительными для возникновения и развития жизни.
Температура планеты зависит от величины той энергии, которую она получает от своей звезды. Эта энергия зависит как от энергетических возможностей звезды (ее светимости), так и от удаления планеты от звезды. Если данная планета будет находиться слишком близко к звезде, то ее температура может оказаться недопустимо высокой (с точки зрения возникновения жизни). Если же планета находится слишком далеко от звезды, то на ней будет чрезмерно холодно для того, чтобы там возникла и развивалась жизнь. Значит, для звезды с данной конкретной светимостью имеются некоторые предпочтительные удаления, на которых нахождение планеты окажется оптимальным в смысле возникновения жизни. Зоны в пределах указанных расстояний специалисты назвали «зонами обитаемости». Ясно, что для звезд с разными светимостями «зоны обитаемости» находятся на различных удалениях от звезд. Чем выше светимость звезды, то есть чем более «ранним» является ее спектральный класс, тем больше ее «зона обитаемости». Легко понять, что светимость звезды не должна быть чрезмерно малой или чрезмерно высокой. Если рассматривать все звезды в нашей Галактике, то окажется, что из каждых ста звезд примерно только одна или две имеют светимости, оптимальные для возникновения жизни на их планетах. Таким образом, из 150 миллиардов звезд нашей Галактики примерно миллиард звезд обладает светимостью, необходимой для возникновения и развития жизни на планетах этих звезд.
Что касается очень быстрых колебаний температуры на планетах, то они могут быть обусловлены или очень быстрым изменением светимости звезды, или же таким движением планет, при котором в данном месте температура на них будет меняться очень быстро. Известно, что светимость звезды, если она «села» на главную последовательность, изменяется во времени незначительно. Например, светимость нашей звезды — Солнца за последние несколько миллиардов лет изменялась не более чем на несколько десятков процентов. Не в большей мере изменялась светимость и других звезд, находящихся на главной последовательности. Огромное количество красных карликов существенно изменяет свою светимость во времени. Поэтому на их планетах трудно допустить существование жизни. Надо иметь в виду, что красные карлики составляют подавляющее большинство всех звезд. Для зарождения и развития жизни на планете важна не только соответствующая температура. Для этого необходимо, чтобы планета обладала не очень малой, но и не очень большой массой. Если масса планеты слишком мала (например, как у Луны), то она не сможет удержать свою атмосферу. Как известно, если любое тело вблизи планеты движется со скоростью, которая превышает вторую космическую, то оно сможет преодолеть притяжение планеты и уйти в космос. Это справедливо и по отношению к любой частице атмосферного газа (молекуле, атому). На Луне вторая космическая скорость (астрофизики ее называют «параболической») равна всего 2,4 км/с. Поэтому частицы атмосферного газа Луны сумели покинуть ее. На Земле параболическая скорость значительно больше. Поэтому Земля удерживает свою атмосферу в течение многих миллионов лет. Но это не значит, что определенная часть атмосферных частиц не покидает зону, контролируемую земным притяжением. Чем легче частица, тем легче ей покинуть планету. Чем выше от земной поверхности, тем меньшую массу имеют частицы атмосферного газа. В самой верхней части земной атмосферы располагаются самые легкие частицы — атомы водорода. Они-то и убегают, причем весьма успешно. Достаточно всего нескольких лет, чтобы весь водород из земной атмосферы убежал (диссипировал) в космическое пространство. Но тем не менее водород в атмосфере Земли не только не исчезает, но и не уменьшается. Дело в том, что он непрерывно пополняется новым водородом, главным образом в результате образования водяного пара при испарении Мирового океана. Скорость, которую может иметь частица атмосферного газа, зависит не только от массы частицы, но и от температуры атмосферного газа. В верхней части атмосферы Земли температура достигает 500 °C и более. Поэтому и скорость частиц там может быть больше параболической скорости. Двигаясь с параболической скоростью, частица имеет возможность покинуть планету только в том случае, если ничто не мешает ей двигаться. Если же она при своем движении часто сталкивается, то направление ее движения изменяется. Поэтому, вместо того чтобы удаляться от планеты, часть частиц, испытавших столкновения, будет двигаться вниз, по направлению к планете. Можно сказать, что если частиц атмосферного газа много, то есть плотность атмосферы велика, то частицы, сталкиваясь друг с другом, сами себе мешают вырваться за пределы притяжения планеты. Если масса планеты настолько велика, что параболическая скорость становится недостижимо большой, то частицы атмосферного газа вообще лишены возможности выйти за пределы притяжения планеты. Они будут оставаться при ней в течение многих миллионов лет. Можно также сказать, что атмосфера такой планеты является первоначальной, «первобытной». Известно, что звезды и планеты образовались из среды, состоящей главным образом из водорода и гелия. Из этой же среды образовалась и атмосфера планеты. Она у планет большей массы должна иметь большую плотность. Это подтверждается планетами Юпитер и Сатурн, атмосферы которых действительно таковы: имеют очень большую плотность и состоят из водорода и гелия. Все это определяется тем, что массы этих планет велики. Если их массы увеличить еще в 5 — 10 раз, то они принципиально не будут отличаться от звезд-карликов.
Несомненно, сила притяжения планеты должна сказаться и на организации и функционировании живых организмов. Справедливо указывалось на то, что если эта сила велика (то есть масса планеты слишком велика), то функционирование и организация живых организмов затруднены. Можно заключить, что жизнь возможна на планетах, масса которых не меньше нескольких процентов от массы Земли, но не превышает десятикратной массы Земли. Следует подчеркнуть, что рассмотренные физические условия на планете (температура, состав атмосферы, сила притяжения) взаимосвязаны. Ведь планеты с разными массами в данной планетной системе располагаются на разных удалениях от своей звезды не случайно, а в определенном порядке. На примере нашей планетной системы это выглядит так. Планеты земной группы образовались не из первоначальной среды, богатой водородом и гелием. Они образовались из вещества с малым содержанием водорода и гелия, вещества, которое состояло из пылинок и молекулярных агрегатов, которые образовались позднее в первоначальной туманности. Поэтому «внутренние» планеты (планеты земной группы) состоят преимущественно из тяжелых химических элементов. В то же время на сравнительно больших удалениях от Солнца происходила конденсация среды, состоящей из водорода и гелия, в результате которой образовались планеты-гиганты.
Из всего вышесказанного следует важный вывод: планеты с приемлемыми с точки зрения возникновения жизни массами располагаются на таком удалении от своей звезды, где обеспечивается оптимальный температурный режим для развития жизни. В этом и проявляется взаимосвязь различных физических условий на планетах данной планетной системы.
Теперь попробуем оценить, сколько можно ожидать всего внеземных цивилизаций. Это было сделано при разработке проекта по проблеме поиска внеземных цивилизаций «Циклоп». Следуя проекту, предположим, что каждая вторая звезда в Галактике имеет планетную систему. Далее предположим, что на одной из планет данной планетной системы имеются такие физико-химические условия, при которых может возникнуть жизнь. Но это только возможность. Она реализуется только на одной из пяти планет (а значит, и планетных систем). Далее предположим, что если на планете возникла жизнь, то на определенном этапе эволюции она станет разумной. Сообщество разумных особей со временем образует цивилизацию, овладевшую технологиями, с помощью которых станет возможной связь данной цивилизации с другими цивилизациями.
Но надо учесть и желание цивилизации пойти на такой контакт. Ведь она может иметь техническую возможность вступить в контакт с другими цивилизациями, но не иметь желания вступать в такой контакт. Будем считать, что таких нелюдимых цивилизаций половина из всех наличных. Но приведенными выше предположениями не исчерпывается вопрос. Важно знать число цивилизаций, которые существуют одновременно. Здесь возникает непростой вопрос: какое время может существовать цивилизация на необходимой стадии развития, то есть в той стадии, когда она способна устанавливать контакты. Относительно продолжительности этого зрелого периода цивилизаций высказывались крайние точки зрения, некоторые — весьма пессимистичные. Например, если другие цивилизации будут развиваться по такому же пути, что и наша цивилизация, то этот зрелый период их существования исчисляется всего несколькими десятками лет. Такой пессимистический взгляд был навеян той опасностью, которая висит над нашей цивилизацией. Но абсолютное большинство ученых смотрит на эти вопросы более оптимистично. Они не считают необходимым ограничивать продолжительность зрелого периода цивилизации. В этом случае каждая из цивилизаций может существовать в этой фазе с высоким технологическим уровнем миллиарды лет.
Все сказанное выше можно выразить формулой, позволяющей определить число одновременно существующих высокоразвитых цивилизаций
Здесь N — полное число звезд в Галактике (равно 1011); Р1 — вероятность того, что звезда имеет планетную систему (равна 0,5); Р2 — вероятность наличия на планете жизни (равна 0,2); Р3 — вероятность наличия на планете, где уже возникла жизнь, разумной жизни (равна 1); Р4 — вероятность возникновения на этой планете с разумной жизнью высокого технологического уровня, позволяющего установить контакт с другими цивилизациями (равна 0,5); t1 — величина периода, в течение которого цивилизация находится на высокоразвитом уровне; Т1 — возраст Галактики. Эту формулу впервые предложил еще в 1959 году один из первых исследователей внеземных цивилизаций Дрейк (он принимал участие в работе симпозиума в 1981 году). Эту формулу называют формулой Дрейка.
Если мы хотим определить вероятность того, сколько из всех существующих цивилизаций будет обнаружено с помощью определенных технологических средств, то должны в формулу Дрейка добавить еще один сомножитель Р, который будет определяться тем, насколько подходящим образом выбраны все характеристики аппаратуры поиска (рабочая частота, направление поиска, ширина полосы и др.). Эта формула модифицировалась и другими исследователями. Если говорить несколько формально, то исследование многих фундаментальных вопросов (например, у скольких звезд имеются планеты, на скольких из них возникает жизнь и т. д.) можно рассматривать как уточнение, конкретизацию формулы Дрейка. В свою очередь, последняя вероятность Р5, позволяющая определить, сколько цивилизаций можно обнаружить в результате поиска, содержит практически всю основную информацию о технических средствах связи.
В настоящее время специалисты уверены в том, что мы пока что не обнаружили сигналы от внеземных цивилизаций, так как для этих целей использовалась аппаратура, не удовлетворяющая необходимым требованиям (по частоте, ширине полосы, направлению, мощности, форме сигналов, времени измерения и т. д.), и поэтому вероятность Р5 пока что равна нулю.
«ПОЯС ЖИЗНИ» В ГАЛАКТИКЕ
Мы уже говорили, что Галактика вращается вокруг оси, перпендикулярной галактической плоскости. Но это вращение своеобразное: угловая скорость вращения на разных удалениях от центра различная. Чем дальше от центра, тем угловая скорость вращения меньше. Солнце со своей планетной системой находится на удалении 10 кпк от центра Галактики. Здесь скорость вращения Галактики составляет 25 км/с·кпк. Для сравнения укажем, что вдвое ближе к центру эта угловая скорость почти вдвое больше (45 км/с·кпк).
В Галактике имеются спиральные рукава, которые вращаются как единое целое, с одной и той же угловой скоростью. На определенном удалении от центра Галактики скорость вращения рукавов совпадает со скоростью вращения вещества Галактики. Эту зону (кольцо, пояс) называют зоной коротации (буквально, со-вращения). Как уже говорилось, рукава Галактики представляют собой волны плотности. В коротационной зоне скорость их равна скорости вращения Галактики. Это ставит зону коротации в особые условия, существенно отличные от тех, которые имеются ближе к центру Галактики и дальше от него. Условия эволюции облаков межзвездного газа и образования звезд в зоне коротации отличаются от условий вне этой зоны. В этих особых условиях находится наше Солнце со своей планетной системой. Оно вращается вокруг центра Галактики с угловой скоростью, которая в 10 раз больше угловой скорости вращения Галактики на этом удалении от центра. Поэтому Солнце перемещается по окружности с центром, совпадающим с центром Галактики, и при этом пересекает попеременно разные рукава Галактики. В настоящее время оно движется между рукавами Персея и Стрельца. Весь этот путь оно должно пройти за время, равное 4, 6 миллиарда лет. При вхождении в спиральный рукав условия принципиально меняются. Вблизи внутренней кромки рукава происходит эффективное образование новых звезд с небольшими массами (вроде нашего Солнца), а также массивных Сверхновых II типа. Вспышки Сверхновых вблизи Солнца должны оказаться губительными для биосферы Земли. Этот вопрос был детально рассмотрен В. И. Красовским и И. С. Шкловским. Они выдвинули гипотезу, что раньше вблизи Солнца уже вспыхивала Сверхновая звезда и Солнце с тех пор движется через радиотуманность. В результате вспышки Сверхновой в окружающее пространство выбрасываются высокоэнергичные заряженные частицы (космические лучи), которые действуют на биосферу губительно. Их интенсивность после вспышки Сверхновой увеличивается примерно в сто раз. Определенный радиационный фон, вызванный действием космических лучей, на Земле существует всегда. Его оценивают величиной D — 0,04 бэр/год. Если этот фон увеличится в сто раз из-за увеличения интенсивности космических лучей после взрыва Сверхновой, то вследствие риска гибели от рака и от летальных мутаций должно вымирать 0,056 % населения земного шара. Чтобы оно не уменьшалось, надо, чтобы прирост населения покрывал это уменьшение (а также уменьшение численности населения по другим причинам). Если прироста не будет, то все население земного шара вследствие действия радиации должно вымереть за 10 тысяч лет. Такое время Солнечная система движется в радиационном облаке, образовавшемся после взрыва Сверхновой. В наше время прирост населения земного шара составляет 2,3 % в год, то есть оно должно удваиваться за 30 лет. В период с 1830 года до наших дней эти цифры значительно меньше: ежегодный прирост всего 0,7 %, а период удвоения составляет 100 лет. В ранние периоды прирост населения был вообще мизерным. Так, от древнего до среднего палеолита ежегодный прирост населения составлял всего 4 человека на 10 тысяч населения. При таком приросте удвоение численности населения могло бы произойти только в течение 17 000 лет. Ясно, что такой прирост неспособен компенсировать вымирание населения в случае вспышки Сверхновой звезды.
По гипотезе В. И. Красовского и И. С. Шкловского причиной известного вымирания рептилий в конце мелового периода была вспышка Сверхновой звезды вблизи Солнечной системы.
Но нас интересует сейчас не только и не столько наша, сколько внеземные цивилизации. Они, так же как и мы, могут существовать только в тот период, пока их обитель жизни, как и наша Солнечная система, движется между спиральными рукавами. Если цивилизация попадает в спиральный рукав, то о ее жизни говорить не приходится. Она подвергнется облучению не только одной Сверхновой звездой.
Время прохождения Солнца от рукава Стрельца к рукаву Персея составляет примерно 4, 6 миллиарда лет. Если это действительно так, то наша цивилизация имеет в запасе еще примерно 3, 3 миллиарда лет. Это и есть максимально возможное время жизни цивилизации на Солнечной системе. Другие объекты в коротационной зоне движутся относительно спиральных рукавов с такой же скоростью. Поэтому время жизни их цивилизаций должно иметь такую же продолжительность.
Для нас важно оценить, сколько может быть цивилизаций в коротационной зоне, которую называют «поясом жизни». Л. С. Марочник детально разработал эту проблему в своих книгах и научных работах и представил свой доклад на симпозиум в Таллине. По его оценкам, максимальное число цивилизаций нашего технологического уровня в «поясе жизни» Галактики составляет примерно 40 миллионов! При этих оценках, как уже говорилось при анализе формулы Дрейка, учитывались вероятности таких событий: что звезда имеет планетную систему, что на планете имеется жизнь, что эта жизнь является разумной и цивилизация достигла соответствующего технологического уровня. Учитывался также возраст Галактики и период времени, в течение которого цивилизация находилась на должном технологическом уровне. Далее было получено, что примерно 2/3 всех цивилизаций находится на технологическом уровне выше уровня нашей цивилизации.
Эти оценки дают максимальное число цивилизаций. Более точно определить это число трудно. Надо иметь в виду, что оно в принципе может быть значительно меньше. Л. С. Марочник пишет: «Орбита, по которой движется Солнечная система в Галактике, может быть образно названа «дорогой жизни» так же, как зона коротации — «поясом жизни» в Галактике».
Проведенный анализ можно провести и применительно к другим галактикам. Там тоже должны существовать «пояса жизни».
АСТРОИНЖЕНЕРНАЯ ДЕЯТЕЛЬНОСТЬ ЦИВИЛИЗАЦИИ
На некотором этапе развития цивилизация может достигнуть такого высокого технологического уровня, что ей на своей планете станет тесно. И дело тут не только и не столько в тесноте в прямом смысле слова, сколько в смысле энергетическом. Правда, эти два аспекта определенным образом связаны. Это можно проиллюстрировать на примере Земли. Если человечество будет увеличивать потребление (а значит, и выработку) энергии такими же темпами, как сейчас, то через 200 лет вся энергия, вырабатываемая на Земле, составит 1 % от приходящей на нее солнечной энергии. Этого допустить нельзя, так как нарушится тепловой режим Земли. Необходи-мо остановиться на 0,1 %. Таким образом, если развитие цивилизации на Земле будет проходить примерно по такому «сценарию», то землянам придется осваивать околоземное пространство, а затем, возможно, и всю планетную систему. Собственно, еще К. Э. Циолковский считал, что по мере развития земной цивилизации все большая часть человечества будет переселяться в космос. Для выхода цивилизации за пределы своей планеты (или другого объекта, на котором она обитает) ей необходимо выполнить непростые инженерные работы в окрестности этого астрофизического объекта. Такие работы называют астроинженерными, а сами сконструированные объекты — астроинженерными сооружениями.
Астроинженерные сооружения должны удовлетворять определенным требованиям: на них должны быть обеспечены необходимые для жизни условия, и, кроме того, они должны позволять улавливать необходимое количество энергии от своей звезды.
Сегодня имеется несколько различных проектов создания астроинженерных сооружений. Один из таких проектов, предложенный О ’Нейлом, предусматривает сооружение объекта оболочечного типа. Весь объект состоит из некоторого количества колоний, в которых обеспечение электроэнергией и практически вся их деятельность могут быть полностью автономными. Каждая такая колония представляет собой цилиндр, боковая поверхность которого поделена на шесть одинаковых продольных секций. Каждая вторая секция является прозрачной. Это делается для того, чтобы внутрь цилиндра мог попадать свет своей звезды. На эти длинные и огромные «окна» приделаны наружные ставни, которые позволяют наглухо или частично закрывать окна. Предлагается ставни сделать изнутри зеркальными. Это даст возможность при определенном их положении направлять свет звезды (Солнца) внутрь колонии. Каждая вторая секция непрозрачная. Проектант назвал их «долинами». Если такие колонии будут строиться вокруг Земли, то предлагается непрозрачные долины покрыть изнутри материалами, доставленными из Луны, — титаном и алюминием (именно этих элементов там достаточно много). Затем слой этих металлов должен быть покрыт слоем почвы толщиной не менее полутора метров. По желанию жителей колонии здесь можно создать такой ландшафт, к которому они привыкли на своей планете. Это может быть холмистый или горный пейзаж. Долины предназначены для того, чтобы в них выращивать сельскохозяйственные культуры, сажать сады, разбивать клумбы, розарии. В долинах же строятся жилые дома, спортивные комплексы и культурные центры. Можно в одном цилиндре сосредоточить только жилые комплексы и социально-культурные объекты, а все сельскохозяйственное и другое производство организовать в другом, специально для этого созданном цилиндре. Естественно, внутри цилиндра должен содержаться воздух с тем составом, температурой и давлением, к которому население колонии привыкло на своей планете. Автор проекта считает вполне возможным создать внутри цилиндра даже привычные для колонистов облака, плывущие в голубом небе.
Предусматривается установить цилиндр таким образом, чтобы его ось все время совпадала с направлением на звезду (Солнце). Это необходимо для того, чтобы одно донышко цилиндра все время было подставлено под лучи звезды. На нем или вокруг него на большой площади должны быть расположены звездные электростанции, позволяющие перерабатывать энергию излучения звезды в электрическую энергию. Такая электростанция одной колонии с населением в 10 тысяч человек способна давать для каждого жителя мощность в 120 кВт.
Не обязательно сооружать все цилиндры-колонии одинаковыми по размерам. Автор проекта считает, что применительно к землянам первую колонию следовало бы соорудить в виде цилиндра с радиусом в 100 метров и длиной 1000 м. В нем могло бы разместиться 10 тысяч человек. В первой колонии должны находиться конструкторы и строители, в задачу которых должна входить разработка системы полного самообеспечения. После выполнения этой задачи они должны заняться строительством второй колонии, размеры которой в 10 раз больше. Другими словами, первая колония — это просто «вагончик» строителей, созидающих город в космосе. По мере увеличения числа строителей должна увеличиваться и емкость каждой новой колонии. Поэтому уже четвертая колония могла бы иметь диаметр 6–7 километров, а длину — все 40 километров. В таких колониях могут постоянно комфортабельно проживать до 20 миллионов человек. То есть такая колония по народонаселению может быть приравнена к современному среднему государству. O'Нейлу необходимо было решить еще один вопрос, а именно: как стабилизировать в пространстве колонию-цилиндр и одновременно как создать силу такого притяжения жителей колонии, к которой они привыкли на планете. Проект разрабатывался применительно к нашей земной цивилизации. Поэтому бралось в расчет земное притяжение. Для решения этой задачи автор предложил строить колонию в виде двух связанных цилиндров, которые вращаются в разные стороны. Это нужно для того, чтобы суммарный угловой момент системы был равен нулю. За счет вращения каждого цилиндра внутри него для тех конструкций, которые связаны с оболочкой цилиндра, возникает эквивалентная сила тяжести. Если вращать самую первую (самую малую) колонию с периодом в 21 секунду, то, находясь на внутренней стороне цилиндра, человек будет испытывать такую же силу тяжести, что и на Земле. Но если мы внутри такой колонии будем подниматься вверх, то есть удаляться от внутренней поверхности в направлении оси цилиндра, то создаваемая за счет вращения эквивалентная сила тяжести будет уменьшаться. На самой оси цилиндра мы этой силы не почувствуем вообще. Так что в самой внутренней, центральной вдоль оси части цилиндра предметы или конструкции будут парить в воздухе.
Применительно к большим колониям скорости вращения цилиндра будут другими, но это не принципиально. На первый взгляд это покажется чистой фантастикой. Такой же фантастикой не так давно казалась высадка человека на Луну. О'Нейл пришел к выводу, что создание четырех колоний от самой маленькой (строительного вагончика) до большой, вмещающей около 20 миллионов жителей, можно осуществить уже в начале будущего века. Он намечал окончание всех работ на 2008 год. Сейчас очевидно, что этот срок будет продлен, отношение к проекту О'Нейла компетентных кругов США очень серьезное. Несомненно, проект является предприятием вполне реальным.
Но мы должны помнить и о реальной стоимости его осуществления. В проекте разработан и этот вопрос. Стройматериал для постройки колоний предлагается брать на Луне. Для самой малой колонии потребуется около 500 тысяч тонн материала. Полагается, что этим материалом будут алюминий и стекло, так как этих веществ на Луне достаточно много. 98 % всего строительного материала можно взять на Луне, тогда как с Земли надо будет привезти жидкий водород. Этот материал надо будет перевезти к месту строительства, которое удобнее всего выбрать в одной из двух точек либрации системы Земля — Луна. Это достаточно близко к Луне, дешевле обойдется транспортировка материала. Кроме того, здесь реализуются такие условия, при которых грузы наиболее устойчивы. Подсчитано, что для строительства первой колонии с Земли придется вывезти около 4 тысяч тонн оборудования и 5,4 тысячи тонн жидкого водорода. Надо будет доставить с Земли на стройплощадку около 2000 строителей. Затем к ним в свое время приедут жители колонии.
О'Нейл оценивал все расходы на создание первой колонии в 30 миллиардов долларов (в 1972 году). Но если эта сумма даже утроится, то она все равно останется реальной для развитой цивилизации. Если исходить из возможности оптимальной организации жизни, то описанные выше колонии очень выгодны. Перемещения в пространстве вне планет должны быть дешевыми, сами колонии компактны, энергетические и другие коммуникации коротки и поэтому недорогие. К этому надо добавить, что строительство каждой последующей колонии будет дешевле (в расчете на каждый кубический метр), чем предыдущей. А точнее, строительство колонии второго ранга, полезная площадь которой в десять раз больше первой колонии, всего на 10 % дороже, чем создание первого «строительного вагончика». Для строительства колоний третьей и четвертой моделей можно использовать материал астероидов (их легче разбирать, чем планеты). Несмотря на приличную стоимость проект О' Нейла показывает, что создание астроинженерных сооружений внеземными цивилизациями дело вполне реальное.
Есть и другие проекты. Кратко рассмотрим один из них, предложенный Дайсоном. Принцип построения астроинженерных сооружений иной. Такие сооружения можно строить поэтапно, постепенно наращивая полезную площадь. Поэтому эту модель назвали «иерархической», то есть состоящей из последовательных ступеней. Кратко поясним, что собой представляют эти ступени.
Первая ступень иерархической модели создастся из балок, длина которых в 100 раз больше их толщины. Из 12 таких балок собирается правильный октаэдр. Далее 100 собранных таким путем октаэдров выстраиваются в линейку. Из 12 таких линеек создают октаэдр, который является второй ступенью модели. Затем все повторяется: из 100 больших октаэдров монтируют линейку — «столб». Из 12 таких столбов создают новый октаэдр. И так до тех пор, пока в этом есть необходимость (и возможность). Говоря точнее, эта конструкция имеет верхний предел. Он обусловлен действием на конструкцию приливных гравитационных сил, которые могут ее разорвать, если превысят некоторую предельную величину. Этим силам должны противодействовать силы упругости (сопротивление твердых тел разрывам или изгибам). Порог, при котором уже достигается баланс этих сил, превышать нельзя иначе конструкция разрушится.
Если конструкция находится на круговой орбите вокруг Земли на высоте 300 километров, то она может иметь максимальные размеры порядка 260 километров. Если орбита, на которой находится конструкция, является геостационарной, то размер конструкции может достигать примерно 4000 километров. Если конструкция вращается вокруг Солнца, как и Земля (на том же удалении), то ее допустимый размер может в два раза превышать размер Солнца. Естественно, если речь пойдет о конкретном строительстве, то реальные размеры будут выбраны значительно меньше, чем приведены здесь. Ведь конструкция должна иметь запас прочности.
У читателя должен возникнуть законный вопрос: что же дальше делать с этими октаэдрами? Эти «соты» надо обтянуть «пленкой» и использовать. Специалисты считают, что такая ажурная конструкция более удобна для того, чтобы перехватывать значительную часть излучения звезды. Строительство ее выгодно в смысле расхода материала. Если в моделях О'Нейла масса конструкции изменяется как квадрат размеров модели, то в моделях Дайсона плотность вещества в системе с увеличением ее размеров быстро падает.
Такого типа конструкции, предназначенные для создания огромных поглощающих или отражающих излучение экранов, называют сферами Дайсона. По оценкам Дайсона на строительство 200 тысяч таких конструкций уйдет всего одна тысячная процента массы Земли. Зато из них можно было бы соорудить вокруг Солнца экран и перехватить все его излучения и использовать его энергию для нужд земной цивилизации. Правда, это делать нельзя, иначе можно перегреть среду обитания. Если не задаваться целью строительства полного экрана солнечного излучения, то расход материала значительно меньше. Автор получил такие оценки. Самая первичная стальная балка выбирается толщиной 1 сантиметр и длиной 1 метр. Чтобы построить из таких балок конструкцию размером в 260 километров, потребуется всего один миллион тонн материала.
Проекты космических «эфирных городов», как их назвал предвидевший их К. Э. Циолковский, ценны тем, что они дают конкретное представление о всех сторонах создания астроинженерных сооружений, вплоть до их стоимости. Специалисты считают, что если мы даже не обнаружим в ближайшем будущем в Галактике астроинженерные сооружения, нам их рано или поздно придется все равно строить, чтобы не ограничивать развитие нашей цивилизации.
КОСМИЧЕСКИЕ ЗОНДЫ
Некоторые данные позволяют предположить, что вблизи Земли находится зонд, посланный какой-то цивилизацией. Впервые эти свидетельства обсуждались и анализировались Брейсуэллом (1960 год), а затем Л. В. Ксанфомалити (1981 год). Сейчас в специальной литературе этот зонд (или зонды такого типа) назван зондом Брейсуэлла-Ксанфомалити. Об этом зонде публиковались материалы в популярных журналах. Наше изложение основано на материалах научных совещаний семинара Специальной астрофизической обсерватории АН СССР (1975 год) и Таллинского симпозиума (1981 год).
В 20-е годы нашего столетия начала работать первая в мире европейская коротковолновая радиостанция на частоте 9,55 МГц, принадлежащая фирме «Филипс». Радиостанция посылала в эфир телеграфный сигнал каждые несколько десятков секунд (в часы ее работы). Прием этих сигналов велся на разных удалениях от передатчика. Очень скоро обнаружилось, что через несколько секунд после посылки сигнала появляется его радиоэхо. Это явление впоследствии получило название задержанных радиоэхо. Такой же эффект заметили и специалисты, работающие на радиолокаторах, а также другие радиосвязисты. Появилась потребность выяснить природу наблюдаемого эффекта. В 1928 году начались систематические экспериментальные исследования, организованные той же фирмой «Филипс». В Голландии (г. Эйндховен) эксперименты проводили ученые В. Пол и К. Штермер. В них принимал участие инженер И. Халс. В рамках экспериментов проводились систематические измерения характеристик распространяющихся радиосигналов на частоте 15 МГц.
В результате было зарегистрировано несколько длинных серий задержанных радиоэхо, времена задержки которых изменялись от 3 до 15 секунд. Позднее были зарегистрированы задержки вплоть до 30 секунд. Результаты этих экспериментов были опубликованы в английском журнале «Нейчур», а также в других журналах.
После этого подобные измерения проводились и другими коллективами исследователей. В результате банк данных о задержанных радиоэхо увеличился.
Анализ всех этих данных показал, что частота радиосигнала во всех случаях остается практически неизменной. Меняется только время задержки радиоэхо относительно породившего его радиосигнала. Кроме того, часть эхо-сигналов изменяет свою форму: эхо-сигналы становятся «размытыми». Остальные эхо-сигналы очень четко повторяли форму изначального радиосигнала.
Такой же эффект обнаружили и операторы, работающие на телефонных связных коротковолновых станциях. Они слышали эхо собственного голоса. Его назвали «голосом с угла комнаты».
Когда были проанализированы все данные задержанных радиоэхо, полученные с 1927 года до наших дней, выявили следующие свойства эхо-сигналов. Во-первых, число зарегистрированных случаев эхо-сигналов зависит от сезона. Больше всего их было зарегистрировано в феврале и меньше всего в июне и августе. Во-вторых, на высоких частотах был зарегистрирован незначительный сдвиг частоты (46–50 Гц), обусловленный эффектом Доплера. В-третьих, эхо-сигналы несколько ужимались. Это так называемая «компрессия» сигнала. При длительности посылки 1,50 секунды длительность эхо-сигнала составляла всего 1,25 секунды. Эхо-сигналы регистрировались даже на сверхвысоких частотах и на сантиметровых волнах. В-четвертых, «размытые» эхо-сигналы регистрируются в десятки раз чаще, чем эхо-сигналы, в точности повторяющие основной изначальный сигнал. В-пятых, чаще всего регистрировались эхо-сигналы с длительностями задержки в 2 и 8 секунд. Вероятность появления эхо-сигналов с другими длительностями намного меньше.
Кроме этих свойств было установлено еще одно весьма принципиальное качество эхо-сигналов: они наблюдаются тогда, когда запаздывающая либрационная точка Луны проходит меридиан. В редких случаях отмечались запаздывающие радиоэхо и тогда, когда меридиан проходила опережающая либрационная точка. Этот последний факт очень важен, поскольку он дает основания подозревать, что именно в либрационных точках системы Земля — Луна находится зонд, который принимает радиосигналы с Земли и затем посылает их обратно, манипулируя задержками между основным сигналом и тем его повторением, которое посылает на Землю предполагаемый зонд.
Почему положение зонда могло бы быть связано с либ-рационными точками Земля — Луна, мы объясним позже и расскажем о результатах экспериментов по наблюдению этих точек (а точнее областей). В 1973 году английский астроном Д. Лунан исследовал, как изменяется номер посылки радиосигналов в зависимости от времени задержки радиоэхо. Использовались данные, полученные 11 октября 1928 года Ван дер Полом, Штермером и Халсом. Из данной конкретной последовательности эхо-сигналов Д. Лунан получил последовательность пар цифр. Первым числом этой пары служил номер посылки, а вторым числом пары служила длительность задержки эхо-сигнала. Любую пару чисел можно на координатной плоскости изобразить точкой, координаты которой равны этим числам. Так, информацию, содержащуюся в последовательности посылок, можно представить в виде точек, расположенных определенным образом на плоскости (листе бумаги). Затем Лунан по конфигурации фигуры из точек привязал эту фигуру к определенной группе звезд (созвездию). Его идея состояла в том, что зонд, манипулируя длительностью задержки радиоэхо, передавал на Землю информацию о том созвездии, откуда он был послан.
Такой способ выделения информации из посылок был подвергнут сомнению, так как при этом способе кодирования потеря хотя бы одного эхо-сигнала в точке приема на Земле приводит к полной дезинформации. В этом направлении работали и другие дешифровщики-любители. Наиболее привлекательной показалась идея инженера П. Гилева. Мы не будем излагать детали метода дешифровки, который применил П. Гилев. Из дешифровки последовательностей эхо-сигналов П. Гилев установил, что в этой последовательности дана информация о созвездии Льва, приведены его очертания, какими мы их видим на нашем небе. Точнее, из расшифровки посланных зондом эхо-сигналов, по Гилеву, следует, что зонд направлен к нам с планеты Тета созвездия Льва. Если бы зонд действительно в своих передачах применял код П. Гилева, то это позволило бы ему в кратком тексте заложить значительный объем информации, причем само сообщение в этом случае неоднократно дублируется. Это значит, что очертания одной и той же группы звезд, которые получаются путем дешифровки последовательности эхо-сигналов, повторяются многократно. Также повторяется и другая информация, заложенная в сообщении. Более того, координаты отдельно взятых звезд приводятся в сообщении в той же последовательности, в какой убывает яркость этих звезд. На первый взгляд тут все очень здорово, чуть ли не открыто существование внеземных цивилизаций. Но на самом деле все сложнее. Опасны обе крайности. Первая в данном случае состоит в построении на этих данных научных выводов. Вторая состоит в том, чтобы отбросить эти факты, как не содержащие научной ценности. Истина находится посередине. Те из фактов, которые научно обоснованы и достоверны, должны найти себе строго научную интерпретацию. Поэтому не будем торопиться с выводами, что радиозонд вблизи Земли уже обнаружен. Но и не будем закрывать глаза на существующие факты.
Как можно объяснить задержанные радиоэхо? Одна из версий — это образование радиоэхо в ионосфере Земли. Основной сигнал идет к точке приема кратчайшим путем, а радиоэхо — через ионосферу. Свойства ионосферы могут очень сильно изменяться в зависимости от многих факторов (в частности от сезона). Главным из этих факторов является возмущенность магнитного поля Земли, которая вызывается приходящими от солнца потоками заряженных частиц. В это время в ионосфере Земли также развиваются возмущения, которые наиболее сильно проявляются в высоких широтах северного и южного полушария. Это значит, что меняются условия распространения радиоволн в ионосфере. Это может привести к тому, что будет изменяться не только длительность задержки радиоэхо, но и форма сигнала. Они могут стать «размытыми» и т. д. Структура ионосферы (особенно в возмущенном состоянии) такова, что вполне возможно физически образование не только одного эхо-сигнала, но и нескольких сигналов, следующих друг за другом с разными задержками.
Неискушенному читателю может показаться, что найдено физическое естественное объяснение задержанных радиоэхо. Но реальность этого механизма вызывает сомнения. Конкретные доводы, на которых основаны эти сомнения, мы не приводим. Здесь это не принципиально.
Значит, надо снова повернуться в сторону либрационных точек системы Земля — Луна и постараться строго научно разобраться в данном вопросе.
Что собой представляют либрационные точки? Задача трех тел строго математически до сих пор не решена. Но имеются частные решения, полученные еще в XVIII веке Эйлером и Лагранжем. Одно частное решение этой задачи, полученное Лагранжем, говорит о том, что если имеются три тела, одно из которых имеет малую массу, то это легкое третье тело должно расположиться в вершине одного из двух равносторонних треугольников, в других двух вершинах которого находятся остальные два более массивных тела. Третье тело с малой массой должно располагаться в одной из двух точек (точек Лагранжа). Эти точки называются треугольными точками либрации. Если рассматривать систему Земля-Луна, то одна либрационная точка будет располагаться на орбите Луны впереди на 60° (это опережающая либрационная точка), а вторая на той же орбите Луны, но на 60° после Луны.
Особенность либрационных точек, таким образом, состоит в том, что если в них окажется не очень массивное третье тело, то оно здесь будет находиться в положении устойчивого относительного равновесия. Это значит, что если в либрационную точку поместить радиозонд, то без каких-либо затрат энергии он может находиться там продолжительное время.
Либрационные точки — это не только результат частного решения уравнений. Они действительно наблюдаются в нашей Солнечной системе. В частности они наблюдаются в системе Солнце-Юпитер. Еще в 1906 году вблизи треугольных либрационных точек этой пары были обнаружены астероиды № 588 Ахиллес и № 617 Патрокл. Первый из них находится в опережающей либрационной точке, а второй — в запаздывающей. Сегодня таких астероидов уже насчитывается около 700. Среди них есть и довольно массивные. Эти астероиды получили общее название «юпитеровых троянцев». Это подтверждает возможность квазистационарного удержания вещества в окрестности треугольных точек либрации.
Значит, подобная ситуация должна повториться и в системе Земля — Луна (конечно, с учетом величины маcc и характера движения тел). Другими словами, должны существовать и "земные троянцы». По оценкам специалистов, в точках либрации Луны должно быть по крайней мере десять тел с метровыми и даже километровым и размерами.
Начиная с 1956 года начались поиски «земных троянцев» на орбите Земли. Их проводил К. Кордылевский. Он обнаружил визуально светящийся объект вблизи запаздывающей точки либрации Луны и объяснил его как результат рассеяния космической пылью солнечного света. Позднее, 13 февраля 1966 года, в Польше были получены фотографии «облаков Кордылевского». После этого результаты наблюдений были попеременно то положительными, то отрицательными.
Если говорить о рассеянии солнечного света, то надо иметь в виду, что эффективность его зависит не только от размеров рассеивающих частиц, но и от углов, под которыми мы наблюдаем рассеянный свет. И вообще вся эта проблема оказалась очень сложной. По-видимому, результаты наблюдений зависят от условий в межпланетном пространстве, которые определяются, главным образом, солнечной активностью. При повышенной и высокой солнечной активности из Солнца выбрасывается более плотная плазма, потоки которой движутся от него с большими скоростями. Солнечный ветер в этих условиях более эффективно «выдувает» из межпланетного пространства космическую пыль. Видимо, этим объясняется тот факт, что при повышенной и высокой солнечной активности наблюдения рассеяния света на предметах (пыли), находящихся в либрационных точках Луны, были практически безрезультатными. Безрезультатными оказались и многообещающие эксперименты с помощью орбитальной космической станции «Скайлэб» (в переводе «небесная лаборатория»), с борта которой велись измерения яркости рассеянного солнечного света с помощью современной аппаратуры. Из орбитальной лаборатории просматривалась зона точек либрации, но рассеяния света не было обнаружено.
Объекты также пытались обнаружить в либрационных областях с помощью радиолокаторов. Но поиски оказались также безрезультатными. В 1969–1970 годы проводились наблюдения свечения ночного неба на космическом аппарате OSO-6. Они позволили обнаружить вблизи либрационных точек системы Земля — Луна светящиеся объекты. Угловой диаметр их составлял 6°. Поверхностная яркость этих объектов на 10 % превышала яркость противосияния. Обнаруженные светящиеся объекты вблизи либрационных точек движутся по эллипсу, большая полуось которого расположена в плоскости эклиптики и имеет угловую длину 6° (то есть видна с Земли под углом 6°), а малая полуось расположена перпендикулярно плоскости эклиптики и видна под углом 2 °.
Но для того чтобы говорить о непрерывном существовании в либрационных точках каких-либо предметов или рассеивающей солнечные лучи космической пыли, данных явно недостаточно. Тем более что, по-видимому, наличие пылевых облаков вблизи либрационных точек зависит от солнечной активности, а возможно, и от других факторов. То есть пылевые облака, вероятнее всего, появляются там только время от времени, при соответствующих условиях. Значит, наблюдать их надо не эпизодически, а непрерывно, если мы хотим установить их природу.
Был проведен еще один интересный эксперимент. В Горьком мощная (25 МВт) радиопередающая установка, работающая на частоте 9,3 МГц, излучала радиоимпульсы в сторону либрационных областей. Длительность радиосигналов составляла 1 секунду, пауза между ними — 4 секунды. Было проведено 4 серии измерений в период с декабря 1980 года по март 1981 года, в ночное время суток спустя 3 часа после захода солнца и за 3 часа до его восхода. Каждый сеанс измерений длился около 40 минут. Ответных радиоэхо установка не зарегистрировала. Повторим, что и эти эксперименты ни в коем случае не проясняют вопроса полностью. Мы ведь не можем сказать, почему гипотетический зонд не откликнулся на радиосигналы из Горького. Тут возможно много вариантов. Перечислять их не стоит. Важно понимать, что каждый проведенный эксперимент, несомненно, приближает нас к решению этого вопроса, но его результаты не могут дать окончательного ответа на вопрос — есть ли радиозонд в либрационных точках Луны. Это относится к уже проведенным экспериментам. Конечно, можно провести решающий эксперимент. Его можно представить так. Сразу же, как будут зарегистрированы радиоэхо (то есть ретрансляционные сигналы гипотетического зонда), необходимо провести наблюдения за областями либрационных точек всеми доступными средствами (с помощью оптических инструментов, радиолокаторов). Хорошо бы в это время провести непосредственные наблюдения в этих точках с помощью либрационного спутника. Только тогда мы могли бы решись вопрос, имеется ли радиозонд в либрационных точках Луны.
Решение этого конкретного вопроса, как и многих других, относящихся к поиску внеземных цивилизаций, находится в начальной стадии. Мы пока что не можем сделать определенного однозначного заключения, есть ли радиозонды вблизи Земли, или их нет. В 1981 году на Таллинском симпозиуме в докладе на эту тему говорилось так: «Если по аналогии с зондами нашей земной цивилизации, используемыми пока лишь для исследования планет и небесных тел в пределах Солнечной системы, допустить существование зондов более высокоразвитых цивилизаций, то, по-видимому, нельзя априори исключить возможность их появления как в пределах Солнечной системы, так и в окрестностях Земли».
ПОИСК ПЛАНЕТ — ОБИТАЛИЩ РАЗУМНОЙ ЖИЗНИ
Поиск планет труден тем, что современные инструменты, которыми располагают как оптическая, так и радиоастрономия, неспособны их разглядеть из-за их малых угловых размеров. Практически сегодня судить о том, имеются ли у данной звезды вращающиеся вокруг нее планеты, можно только по некоторым косвенным признакам. Что это за признаки? Один из таких признаков можно проиллюстрировать на примере нашей Солнечной системы. На Солнце имеются солнечные пятна. Но их количество на видимом диске Солнца, а также местоположение меняются определенным образом. В течение нескольких лет число пятен увеличивается, затем, по достижении максимума, постепенно также в течение нескольких лет уменьшается до своего минимального значения. С активностью образования пятен на Солнце связывают солнечную активность. Она проявляется в выбросе из Солнца потоков заряженных частиц, состоящих, главным образом из протонов и электронов. Чем больше интенсивность этих потоков, тем больше солнечная активность. Мы не будем здесь в деталях рассматривать все возможные причины циклических изменений в величине солнечной активности. Некоторые из этих причин находятся, несомненно, внутри самого Солнца. Но часть причин, возможно самая основная, находится вне его. Эти причины связаны с движением планет вокруг своей звезды — Солнца, а точнее, с особенностями движения всей единой системы, включающей и звезду, и обращающиеся вокруг нее планеты. Если бы масса всех планет была равномерно распределена вокруг Солнца, то центр тяжести всей Солнечной планетной системы в точности совпадал бы с центром тяжести Солнца. Но поскольку это не так и планеты в результате своего обращения с разными периодами могут сгруппироваться в каком-либо одном или нескольких основных направлениях, то центр массы Солнца не совпадает больше с центром массы всей системы. Изменения в характеристиках движения отдельных планет и Солнца не могут происходить как угодно, а только так, чтобы сохранялся постоянным момент количества движения всей системы как единого целого. Поэтому и происходит сдвиг центра Солнца относительно центра массы всей системы, то есть барицентра. Эти изменения весьма значительные. Они составляют почти 3,5 солнечных радиуса, то есть расстояния только в 16 раз меньше расстояния от Земли до Солнца. Такие перемещения центра массы Солнца относительно барицентра Солнечной системы могут происходить за период, равный примерно 17 годам. Это вычисленное значение смещения. К сожалению, до сих пор не проводились измерения величины этого смещения у Солнца и других звезд. Специалисты считают, что несмотря на трудности таких измерений они возможны в принципе и для проблемы поиска внеземных цивилизаций актуальны. Очевидна их ценность и для окончательного решения вопроса о физической природе солнечной активности.
Можно считать установленным, что динамика планетной системы связана с солнечной циклической активностью. Отсюда следует важный для нашей проблемы вывод: изменение звездной активности может свидетельствовать о наличии вокруг этой звезды планет. В связи с этим на Таллинском симпозиуме обсуждались результаты О. Уилксона, который экспериментально установил, что поток излучения от звезды HD32147 (карлик спектрального типа К5) изменяется во времени. Было получено в этих наблюдениях, что активность этой звезды изменяется с периодом больше 7 лет: в течение примерно двух лет активности увеличивается от минимальной до максимальной, а затем в течение 4–5 лет уменьшается до прежней минимальной величины. О. Уилксон обследовал на активность и другие звезды, как более горячие, так и более холодные. Но оказалось, что ни те, ни другие циклических изменений излучательной активности не проявили. Уилксон опубликовал результаты наблюдений, которые были начаты в 1967 году и продолжались по крайней мере до 1984 года. Он исследовал 91 звезду различных спектральных классов.
Эта проблема требует дальнейшей разработки. Во-первых, надо более полно исследовать влияние планет на солнечную активность, чтобы получить некоторые закономерности, по возможности общие для определенного класса звезд. Во-вторых, надо экспериментально исследовать активность звезд и выделить те звезды, которые могли бы быть зачислены в кандидаты на обладание планетами. После этого уже можно будет обследовать эти планеты на предмет наличия на них цивилизаций. Важным шагом явилась разработка экспериментального (динамического) метода, позволяющего определять собственное движение звезд в пространстве с целью определения смещения центра звезды относительно барицентра системы, о котором говорилось выше. Метод позволяет измерять смещения планет как в направлении к нам, так и от нас (то есть по лучу зрения), а также в перпендикулярной лучу зрения плоскости. Метод позволяет определить смещение звезды, точнее, амплитуду ее колебания вокруг барицентра с угловой точностью 0, 01ґґ. Если проводить единичные измерения без длительного накопления сигналов, то эта точность может быть повышена, возможно, даже на порядок. Чтобы выявить колебание звезды относительно барицентра всей системы (звезда плюс планеты), разработан метод, позволяющий измерять малые изменения скорости звезды по лучу зрения порядка 10 м/с. В основу его положен эффект Доплера. Но для достижения большей точности предложена оригинальная калибровка длин волн звездного излучения. Планы по практической реализации этого метода очень большие. По проекту «Орион» (США) планировалось создать специальный наземный звездный интерферометр с базой 55 метров, работающий в оптическом диапазоне, точность измерения на котором должна составить 0,0001ґґ, на несколько порядков повысить точность других инструментов, используемых в динамическом методе, а также создать астрономический телескоп на орбите, который должен позволить измерять угловые расстояния с точностью до 0,000001ґґ. Если эти планы удастся реализовать, то значительно возрастут возможности исследования планетных систем в Галактике и цивилизаций, которые на них обитают. Как же обстоит дело в принципе с прямым поиском планет в нашей Галактике с помощью уже существующих оптических и радиотелескопов?
Теоретические оценки существования планетных систем у звезд показали, что примерно каждая четвертая звезда в нашей Галактике должна обладать планетной системой. Это значит, что до расстояния от нас в 10 парсек должно существовать примерно 130 планетных систем (всего звезд в этом шаровом объеме примерно 530). Искать планеты можно различными методами. Методы непосредственного обнаружения предполагают регистрацию потока излучения от самой планеты, то есть излучения, которое исходит от звезды, но регистрируются после отражения от планеты. Ясно, что этому измерению будет мешать излучение, приходящее непосредственно от звезды. Оценки потоков этих излучений показали, что выделить излучение от планеты на фоне излучения от самой звезды фотографическим способом можно только в том случае, если планета имеет очень большую массу или, как принято у астрономов говорить, если это планета-гигант. Если же проводить измерение излучения планеты в инфракрасном диапазоне (это излучение собственно планеты) и при этом воспользоваться ситуацией, когда излучение звезды экранировано, то можно получить превышение полезного сигнала над уровнем шумов в 10 раз. При такой ситуации сигнал уверенно регистрируется. Но даже если излучение звезды не будет экранировано, метод измерения излучения звезды в инфракрасном диапазоне на много порядков эффективнее фотографического метода. Практически 4-метровый телескоп, работающий в инфракрасном диапазоне, должен бы зарегистрировать излучение планеты.
Однако здесь имеется очень большое «но». Оно заключается в том, что земная атмосфера практически не позволяет проводить такие измерения в инфракрасном диапазоне с необходимой точностью. Поскольку в атмосфере воздух находится в непрерывном вихревом (турбулентном) движении, то изображение, получаемое лучами, проходящими через такую турбулентную атмосферу, будет непрерывно «дрожать». То есть оно получится нерезким. Размытые изображения, мерцания, вызванные турбулентной атмосферой, ее тепловой шум оказывают влияние на наблюдения в инфракрасном диапазоне. Поэтому угловое разрешение, необходимое для определения местонахождения планет, не достигается. В таких измерениях реально можно получить угловое разрешение не более 1–2ґґ. Это очень малое разрешение! Для сравнения скажем, что сейчас в астрономии идет речь уже не об одной угловой секунде, а о ее тысячных долях. Выход из данного положения только один: надо измерения проводить за пределами земной атмосферы, то есть телескоп надо поднимать в космос. При этом также имеются некоторые сложности, в описание деталей которых мы входить не будем. Тем более что специалисты нашли способ от них избавиться. Имеется еще одна возможность вполне надежного определения местонахождения планет в том случае, если проводить измерения за пределами земной атмосферы. Для этого надо использовать не один инфракрасный телескоп, а сразу два, соединенных в общую схему. Включенные соответствующим образом два телескопа составляют вместе интерфейсный космический интерферометр, конструкция которого предложена Брейсуэллом, имеет базу, равную примерно 10 метрам. База интерферометра отстраивается таким образом, чтобы минимум (ноль) в интерференционной картине находился на звезде, а максимум совпадал с планетой. Далее необходимо ось вращения интерферометра направить на звезду. В этом случае сигнал от планеты не может быть постоянным, он будет изменяться с изменением частоты вращения интерферометра. Специалисты говорят, что он будет промодулирован частотой вращения интерферометра. Скорость вращения интерферометра задаем мы сами, поэтому она нам известна с достаточно высокой точностью. Следовательно, мы заранее знаем, какой должна быть модуляция сигнала от звезды. Именно этот факт позволяет надежно обнаружить изменяющийся сигнал от планеты, поскольку он регистрируется на фоне неизменных сигналов от неподвижных звезд.
Возможность таких измерений сигналов от планет очень обнадеживает. Однако надо иметь в виду, что интерферометр должен быть направлен с высокой точностью именно так, как это было описано выше. Наводка максимума интерференционной картины строго на планету не может быть осуществлена заранее, поскольку заранее не известно положение планеты. Поэтому выбор необходимой базы интерферометра, которая удовлетворяла бы указанным выше условиям эксперимента, является делом непростым. Наводка должна проводиться в космосе после того, как будет установлено направление на планету. Для регистрации слабых радиосигналов чаще всего используют метод накопления. Чем слабее сигналы, тем более продолжительным должно быть время. Естественно, что в течение всего этого времени интерферометр должен быть стабилизирован с очень высокой точностью. Это технически осуществить тоже непросто.
Мы привели основные моменты, связанные с измерениями за пределами земной атмосферы, в том числе и для того, чтобы у читателя не сложилось впечатление, будто вынос аппаратуры в космос решает все проблемы и при этом экспериментаторы получают одни плюсы. В большинстве случаев к аппаратуре, которая предназначена для работы в космосе, предъявляются большие требования, чем к «земной». Это касается и надежности ее работы, и малой энергоемкости, и способности работать в автоматическом режиме (без человека), и еще многого-многого другого. Но зато она позволяет получить качественно новую информацию. Так и проявляется научно-технический прогресс в этой области исследований.
Можно попытаться установить наличие планеты вблизи звезды, измеряя светимость звезды в то время, когда по ее видимому диску проходит планета. Ясно, что для этого надо находиться в той же плоскости, в которой планета обращается вокруг звезды (в плоскости эклиптики). Тогда мы будем «видеть», как планета проходит вдоль средней линии звезды — ее экватора. Это идеальные условия для проведения таких измерений. Если мы находимся на некотором небольшом удалении от плоскости эклиптики, когда «видим» планету проходящей севернее или южнее экватора звезды, то в таких условиях измерения также возможны, хотя время покрытия диска звезды планетой будет меньше. Если же планета для нас проектируется недалеко от полюса звезды, то время покрытия слишком мало. Такие эксперименты специалисты назвали наблюдениями планет «с ребра», поскольку при этом наблюдения ведутся не сверху и не снизу по отношению к плоскости, а с ребра. Одно из ограничений этого метода состоит в том, что у нас нет возможности поставить те планеты, которые подлежат наблюдению, на ребро. Мы должны довольствоваться тем их положением, какое есть. Поэтому число планет, которое можно исследовать таким образом, невелико; из 100–200 планетных систем всего одна оказывается в таком положении, которое позволяет вести наблюдение с ребра. Другими словами, вероятность того, что при одноразовом наблюдении мы попадаем именно на такую планетную систему, ничтожно мала. Но если наблюдения вести непрерывно в течение примерно трех лет, то эта вероятность приближается к единице. Но при этом само собой понимается, что наблюдения проводятся на соответствующей аппаратуре, обладающей достаточным угловым разрешением, точностью измерений, надежностью и т. д.
Что же надо измерять при покрытии планетой звезды? Надо измерять те параметры звезды, которые могут измениться в результате такого покрытия. Это блеск звезды и показатель ее цвета. Уменьшение блеска звезды тем больше, чем большая часть ее видимого диска закрыта планетой. В настоящее время разработана методика таких измерений и обработки данных измерений. Одновременное измерение показателя цвета звезды также дает дополнительную информацию о прохождении планеты по видимому диску звезды. Дело в том, что цвет звезд различен в разных частях видимого диска. Это различие выражается в том, что чем ближе к краю видимого диска звезды, тем меньше излучение звезды. Этот эффект получил название потемнения блеска звезды к краю. Но оказывается, что это потемнение для лучей разных цветов происходит с разной скоростью. Так, интенсивность красных лучей по мере приближения к краю диска (лимбу) уменьшается быстрее, чем интенсивность синих лучей.
Поэтому, когда планета находится на диске звезды вблизи ее лимба, цвет звезды изменится в синюю сторону (красного стало меньше), а когда планета продвигается к центру — в красную сторону. Было оценено, что если планета проходит по диску звезды вдоль ее экватора, показатель цвета может изменяться от лимба к центру звезды на 0,7 %. Эти изменения, если они будут измерены, благодаря их симметричной форме могут быть интерпретированы как результат прохождения планеты по видимому диску звезды. Проводится также поиск планет, которые находятся на самых разных стадиях своей эволюции. Их называют протопланетными образованиями (облаками). Поиск ведется главным образом в инфракрасном диапазоне, хотя эти облака можно наблюдать и в радиодиапазоне. Протопланетные облака, как правило, ищут там, где происходит образование звезд.
Что конкретно можно сказать о результатах поиска планет? Исследовались системы, состоящие из двух объектов. Одним объектом является видимая звезда, а вторым объектом — невидимая. Невидимый объект оказывает влияние на движение видимой звезды и тем самым обнаруживает себя. Разными исследователями обследовалось определенное количество таких двойных систем. Оказалось, что в большинстве случаев невидимыми компаньонами видимых звезд являются также звезды и реже субзвезды. Но все-таки у двух систем компаньонами звезд являются, видимо, планеты. Одна из этих двух звезд — звезда Барнарда, которая имеет очень большую угловую скорость движения, достигающую 10,31 угл. сек/год. За это она была названа летящей звездой. Ван-де-Камп проанализировал информацию о положении этой звезды более чем за 60 лет, начиная с 1916 года. Эта информация хранится на фотопластинках (всего 3026 штук), полученных на 61-сантиметровом рефракторе. Тщательный анализ движения летящей звезды по этим данным показал, что на 2400 пластинках содержатся свидетельства изменения положения звезды, которые повторяются с периодом в 25 лет. Эти изменения движения звезды могут быть обусловлены ее обращением вокруг общего барицентра всей системы (звезда плюс невидимые для нас планеты). Изменения в угловой скорости достигают 4·102 угл. сек. Звезда находится на расстоянии 1,81 парсек от Солнца. Масса ее мала и составляет 0,14 от массы Солнца. Поэтому она легко поддается действию на нее планет, в результате чего изменяется ее скорость. Анализ указанных данных показывает, что эти изменения в движении могли бы вызываться двумя планетами, массы которых составляют 0,8 и 0,4 массы Юпитера. Периоды обращения этих планет должны быть равны 11,7 и 26 лет. Большие полуоси орбит двух планет составляют примерно 2,7 и 3,8 а. е. Смещение звезды под действием этих планет должно составить 0,0114 а. е. Такая интерпретация не вполне однозначная. Такие же изменения в движении звезды могут вызвать три планеты, но уже с другими характеристиками. В данном случае это не так важно. На первом этапе чрезвычайно важно удостовериться хотя бы в принципиальном наличии планет у звезды.
Приведенные результаты у некоторых ученых вызывают сомнения. Это относится не к самому многолетнему, очень трудоемкому анализу и обработке фотопластинок, которые были выполнены исключительно тонко и аккуратно. Дело в самом инструменте наблюдения, его разрешающей способности. Ведь изменения в движении звезды, которые анализировались, составляли на фотопластинках всего доли микрона. Если бы эти наблюдения выполнялись прибором с разрешением в 10 — 100 раз выше, то сомнения не возникали бы. Но такие наблюдения, естественно, должны быть многолетними, поэтому и использовались эти данные. На основании экспериментальных данных сделали вывод, что и у компонента А двойной 61 Лебедя также имеются планеты. Раньше было обнаружено (или, как считают сейчас, заподозрено) существование планет у звезд Проксима Центавра, Крюгер 60А и 70 Змееносца. Все указанные звезды будут в дальнейшем исследоваться более тщательно.
Поиск неизвестных планетных систем позволил разработать и опробовать эффективные методы (как прямые, так и косвенные) их обнаружения. На будущее исследователи ставят задачу вести поиск планет по специально разработанной программе с привлечением как космических, так и крупнейших наземных телескопов. Как уже упоминалось, планируется также создание специальных приборов, предназначенных для этой цели.
Понятно, что наличие планеты еще не означает наличие цивилизации. Планета должна быть экологически пригодна для возникновения жизни и ее эволюции в развитую цивилизацию. На ней должна быть соответствующая температура, величина притяжения к ней, которая определяется ее массой, она должна иметь соответствующий период вращения и т. д.