Разведка далеких планет — страница 52 из 61

На первый взгляд, в звездных скоплениях царит полный хаос. Но это не так. Выбрав наугад звезду и приблизившись к ней (хотя бы с помощью телескопа), мы заметим, что иерархическая лестница не оборвалась: оказывается, внутри скоплений звезды редко живут поодиночке, многие из них объединены в двойные системы. А вне скоплений, где не так тесно, есть и тройные, и четырехкратные, и еще более сложные звездные семьи. При этом большинство их них тоже иерархично: даже простейшая тройная система содержит два уровня иерархии — плотная пара плюс удаленный спутник (см. рис. 6.10). В более населенных системах может быть еще больше уровней иерархии. Разумеется, существуют и «одиночные» звезды, рядом с которыми мы не видим светил сравнимой яркости. Однако даже те звезды, которые не имеют рядом с собой ярких спутников, часто сопровождаются небольшими тусклыми телами — коричневыми карликами, или же вообще не самосветящимися телами — планетами; хотя их нельзя считать совершенно холодными, но все же это не звезды (см. главу 6).


Рис. 8.2. В галактиках часть звезд объединена в звездные скопления, похожие на Плеяды (слева). В бедных скоплениях, содержащих до дюжины звезд, их движение носит регулярный характер: относительное расположение соседей сохраняется. В крупных скоплениях звезды движутся хаотически, но при этом они часто объединены в пары и иногда могут обмениваться веществом, как это наблюдается у гигантской звезды Мира в созвездии Кита и ее соседа — белого карлика (справа).

Итак, спускаясь по иерархической лестнице, мы достигли уровня планетных систем. Казалось бы, это последняя ступень, ибо в планетной системе есть «главный дирижер и оркестр»: вокруг доминирующей по массе звезды обращается скопище значительно меньших тел — планет, астероидов, комет. Звезда полностью подчиняет себе их движение, и любая «самодеятельность» здесь кажется невозможной. Однако это не так! У гравитации есть два важнейших свойства: она ничем не экранируется и сильно зависит от расстояния. Поэтому каждый достаточно уединенный объект способен контролировать вокруг себя некоторую область. Такая область влияния есть вокруг любой планеты, и в ней могут удерживаться еще менее массивные тела — спутники.

Мы так долго спускались по иерархической лестнице гравитационно связанных систем, что уже невольно ожидаем встретить на ней и следующие ступени. Но их нет! Выясняется, что у спутников планет нет своих естественных спутников. Во всяком случае, до сих пор они не были обнаружены. Похоже, что планета и ее спутник или спутники — это самая нижняя ступень космической иерархии.

Впрочем, не будем торопиться. В астрономии действует правило: никогда не говори «этого не существует». Лет 20 назад астрономы очень удивились бы, узнав, что спутники есть… у астероидов. Но в 1993 г. стало известно, что они действительно есть. Причем не только одиночные, такие как Дактиль у астероида Ида (243 Ida) или «Маленький принц» у астероида Евгения (45 Eugenia). Очень скоро обнаружились и системы спутников: например, у астероида Сильвия (87 Sylvia) их два — Ромул и Рем. По сравнению с самой Сильвией размером 385×265×230 км они крохи: Ромул в поперечнике 18 км, а Рем — 7 км. Кстати, недавно и у Евгении нашелся второй спутник, вдвое меньший «Маленького принца»; название для него пока не придумали, я бы назвал его «Барашком». Сегодня число астероидов со спутниками уже далеко перевалило за сотню. В большинстве случаев размер орбиты спутника всего лишь в несколько раз больше размера материнского астероида.



Рис. 8.3. Астероид Ида (243 Ida) размером 54×24×15 км и его спутник Дактиль (Dactyl) размером около 1,5 км, сфотографированные в 1993 г. в момент пролета мимо них межпланетного зонда «Галилео» (NASA), направлявшегося к Юпитеру. Общий снимок получен с расстояния 10 500 км, а снимок Дактиля (на врезке) с расстояния 3900 км. Фото: NASA, JPL, USGS.

Кроме маленьких спутников, сопровождающих большие астероиды, в последние годы были открыты и двойные астероиды с компонентами примерно одинакового размера. Например, астероид Антиопа (90 Antiope) на самом деле представляет собой два 110–километровых близнеца, обращающихся по круговой орбите на расстоянии 170 км друг от друга; минимальное расстояние между их поверхностями около 60 км (см. с. 14 цветной вкладки). Астероид Патрокл (617 Patroclus), относящийся к юпитерианским троянцам, тоже состоит из двух почти одинаковых тел размерами 122 и 113 км, разделенных расстоянием около 690 км. Кроме того, обнаружились спутники и у карликовых планет, и у сравнительно небольших объектов пояса Койпера. Поэтому не станем делать поспешных выводов: не исключено, что и у спутников планет когда‑нибудь будут открыты свои спутники.

В мире множества лун

В 1982 г. Борис Силкин опубликовал книгу именно под таким названием — «В мире множества лун», посвященную естественным спутникам планет. Тогда было известно всего 44 спутника, причем 10 из них были открыты в 1979–1980 гг., что и подтолкнуло Бориса Исааковича к созданию книги. Из упомянутых в ней спутников по одному имеют Земля и Плутон (он тогда считался планетой), по два — Марс и Нептун. За Юпитером числилось 16 спутников и подозревалось существование еще одного; в 2000 г. подозрение подтвердилось. У Сатурна насчитывалось 17 спутников и еще 5 числилось за Ураном.

В начале 1980–х гг. астрономы гордились возросшим поголовьем спутников, не догадываясь, какой демографический взрыв предстоит в этом «стаде» в ближайшие годы. Ведь как раз в начале 1980–х гг. на обсерваториях начался переход от фотопластинок к ПЗС — матрицам, которые существенно повысили зоркость телескопов и обеспечили прямой ввод изображения неба в компьютер. Стало возможно быстро осматривать большие области неба и выявлять подвижные объекты.

Прежде для исследования небольшого кусочка неба астроному требовалось на одном и том же телескопе с перерывом в несколько суток получить два снимка этой области на больших стеклянных фотопластинках, которые затем нужно было в специальных растворах проявить, промыть, закрепить, промыть, высушить… и при этом не разбить. А когда фотографии были готовы, начиналось их длительное и кропотливое исследование с помощью специального прибора, блинк-компаратора, позволяющего смотреть на два изображения либо одновременно, либо попеременно, быстро переводя взгляд с одной пластинки на другую. Это помогало заметить крохотные смещения быстро движущихся объектов Солнечной системы на фоне гораздо более далеких «неподвижных» звезд.

С появлением ПЗС — матриц стало возможным последовательно получать множество кадров, не экономя дорогие фотопластинки и не перегружая себя работой по их появлению и просматриванию. Теперь компьютер сам сравнивает последовательные кадры (см. рис. 4.11) и обнаруживает на них близкие объекты по их смещению на фоне звезд порою всего за полчаса. Затем положение этих объектов компьютер сравнивает с рассчитанным на момент съемки положением всех уже известных объектов Солнечной системы и решает, новые это объекты или уже известные. В главе 4 мы узнали, как новые технологии ускорили обнаружение астероидов (см. рис. 4.10); в не меньшей степени ускорилось и обнаружение новых спутников планет (рис. 8.5).


Рис. 8.4. Блинк — компаратор Ловелловской обсерватории производства фирмы «Карл Цейсс» (Германия), за которым Клайд Томбо провел 700 часов в поисках новой планеты. На фото, сделанном около 1950 г., Томбо демонстрирует, как он открывал Плутон в 1930 г.

Но не стоит думать, что поиск новых спутников планет уже стал рутинным занятием. О том, насколько это интересная и непростая «охота», можно судить по истории открытия двух первых внешних спутников Урана — Калибана и Сикораксы. Его совершили две группы астрономов: американцы Ф. Никольсон, Дж. Барнс, Б. Марсден, Г. Уильямс, У. Оффутт и их канадские коллеги Б. Глэдман и Дж. Кавелаарс. Используя 5–метровый рефлектор Паломарской обсерватории (США), они в сентябре 1997 г. обнаружили два небольших спутника Урана, удаленные от него значительно дальше, чем любой из уже известных тогда 15 спутников этой планеты.

Этого открытия ждали давно: ранее неоднократно предпринимались попытки найти далекие спутники Урана, чтобы доказать единство строения спутниковых систем у планет — гигантов. В результате пролета в 1979–1989 гг. зондов «Вояджер-1» и «Вояджер-2» мимо Юпитера, Сатурна, Урана и Нептуна выяснилось, что каждая из этих массивных планет окружена кольцом, в котором или рядом с которым движутся крохотные спутники, как правило, размером несколько десятков километров. Дальше от планеты движутся массивные спутники типа нашей Луны. А еще дальше планету сопровождают маленькие «неправильные» спутники. Их называют так за особенности орбит: если близкие к планете спутники движутся по круговым орбитам, лежащим в плоскости экватора планеты, то далекие спутники движутся по «неправильным» орбитам — заметно вытянутым и тяготеющим не к экватору планеты, а к плоскости ее орбиты. Так проявляет себя гравитационное влияние Солнца, которое на большом расстоянии от планеты уже сравнимо с ее собственным притяжением.



Исключение из этой стройной картины представлял тогда лишь Уран, лишенный, как казалось, неправильных спутников. Все его 15 лун, известных к сентябрю 1997 г., обитали сравнительно близко от планеты, обращаясь в плоскости ее экватора, которая, как известно, почти перпендикулярна плоскости орбиты планеты (часто в шутку говорят, что Уран «лежит на боку»). Но с обнаружением двух новых лун все стало на свои места: они оказались типичными неправильными спутниками. У них небольшой размер, порядка 100 км, и движутся они по весьма вытянутым орбитам, лежащим ближе к орбитальной плоскости планеты, чем к ее экватору. Ожидания астрономов, привыкших искать гармонию в строении Солнечной системы, подтвердились и на этот раз.

Однако возникает резонный вопрос: а почему эти спутники Урана не были открыты раньше? Действительно, интерес к их поиску возник давно, Паломарский 5–метровый телескоп работает уже полстолетия, чего же не хватало? А не хватало чувствительных электронных приемников света (ПЗС — матриц) и быстрых компьютеров для автоматического поиска движущихся объектов на оцифрова