Оптимальными формами галек для выработки простейших рубящих орудий были овально уплощенные. Из них сравнительно легко вырабатывались орудия типа чопперов различной формы. Оббивка таких галек начиналась с более узкого конца. Первый фас на гальке создавал условия для следующих актов оббивки. На фасе благодаря раковистой его форме возникали по крайней мере две точки, благоприятные для ударов. Они находились на противолежащих краях и позволяли вести двустороннюю оббивку гальки. С каждым новым ударом возрастало число таких ударных площадок (рис. 2).
П. Биберсон[80] среди четвертичных оббитых галек в Марокко нашел преобладание плоско-овальных форм. Прослеживая способы оббивки, он разделил их на несколько групп по принципу нарастания числа фасов. Им была обнаружена оббивка не только на конце галек, но и по боковым краям, имеющая как бы целью образование и скобелей, и орудий с функциями резания. Показана эволюция обработки талек и формирование пирамидальных нуклеусов.
Определенную роль играла форма гальки, служившей отбойником. При первичной оббивке механический эффект обеспечивали пальцеобразные формы, удлиняющие траекторию удара, наносимого по касательной. Они предпочитались шаровидным, яйцевидным и дискообразным формам, которыми приходилось работать, применяя почти отвесный удар с короткой траекторией, а потому маломощный. Шаровидным отбойником труднее было наносить и точно направленные удары в фиксированную точку по причине неопределенности его рабочей части.
Рис. 2. Орудия из галек. Получены экспериментальным способом оббивки (последовательное нарастание числа ударов — актов оббивки).
Оббивка галек малого и среднего веса (до 2 кг) производилась без упора на землю или наковальню, над землей, в положении, когда одна из рук играла роль держателя и амортизатора.
При оббивке галек из сланцев и вулканических пород не следовало наносить много ударов в одну точку. Ударная часть отбойника и точка удара на оббиваемой гальке сминались и крошились. Эти части покрывались слоем пыли или мелкой крошки, которые гасили силу удара. Необходимо было менять рабочее положение отбойника и гальки. Поэтому при первичной обработке галек с мягкой или зернистой структурой очень важно было иметь отбойник из более твердого материала с гладкой поверхностью. При ударной обработке кремневого ручного рубила необходимо было применять отбойник из более мягкого камня (рис. 3). Это существенное различие при обработке кремня, обсидиана и кварцита, с одной стороны, и зернистых пород, имеющих шероховатую поверхность излома, — с другой, являлось одним из важнейших условий, определявших развитие техники уже в древнем палеолите. Обработка галек служила одним из путей получения орудий в разные эпохи,[81] когда других материалов не было под руками.
Рис. 3. Кремневое ручное рубило обработанное двусторонней оббивкой с помощь отбойника из мягкого камня.
Кремень, кварцит, обсидиан и другие минералы и горные породы, обладающие одинаковыми физическими свойствами по всем направлениям внутри тела, нуждались в особых приемах обработки. Каждый удар оббивки ручного рубила или другого предмета из этих материалов был своего рода творческим актом, от которого зависел исход всего процесса. Каждый удар требовал тщательного выбора точки удара в соответствии с общей моделью (формой) и ходом обработки. Результат первого удара мог подкрепить или изменить намеченный план действия. Каждый следующий удар зависел от предыдущего.
Необходим был не только оптимальный удар из многих возможных, но и подбор отбойника по общей форме, по весу, форме рабочей части. Важна была позиция обрабатываемого предмета: гальки, желвака, нуклеуса и т. д.
Одним из технических требований был точный расчет удара по отбивной площадке в силовом отношении. Всякое отклонение от оптимума в ту или другую сторону приводило к неожиданным последствиям. Требовался расчет расстояния точки удара от края площадки. Удаление или приближение этой точки в отношении края решительным образом влипло не только на величину отщепа, толщину его сечения, но и на успех самого акта скалывания. Неудачный выбор расстояния мог обесценить весь нуклеус: расколоть его пополам или испортить всю отбивную площадку, в лучшем случае — часть ее.
Удар в намеченную точку необходимо было наносить один раз, но с достаточной силой. Если скалывание не происходило от одного удара, второй удар по тому же месту чаще всего не оказывался удачным, тем более 3-й, 4-й, 5-й удары. После первого удара возникала трещина, с которой не совпадала скалывающая от следующих ударов. Всякая лишняя трещина ухудшала качество. Рано или поздно она давала о себе знать, обесценивая нуклеус.
Важным условием скалывания отщепов с нуклеуса была подготовка поверхности площадки в точке приложения удара. Углы, бугорки, ребра и прочие неровности затрудняли скалывание, а иногда делали его невозможным. Углы и бугорки дробились ударом отбойника, поглощали силу удара. Поэтому подправка площадки для удара входила в технику скалывания как необходимый прием, исторически возникающий в древнем палеолите. Ф. Бордом предложены приемы описания и классификация отбивных (ударных) площадок для отщепав и пластин мустьерско-леваллуазских типов. Прослеживается постепенное усовершенствование подправки края нуклеуса. Начиная с гладкой площадки, покрытой желвачной или галечной коркой, и следующей за ней, подправленной одним легким актом ретуши, картина подправки все усложняется. В конечном итоге мы видим на отщепах и пластинах площадки, тонко испещренные мелкими фасетками, имеющие выпуклую форму. Очевидно, некоторые формы выделенных Ф. Бордом площадок не имеют значения в прогрессе мустьерско-леваллуазской обработки камня, сохраняя узкоклассификационное значение. Вместе с тем тенденция к улучшению отбивной площадки в целях получения более тонкого и правильного отщепа здесь понята правильно. Именно выпуклая, тонко фасетированная площадка позволяла нанести точно рассчитанный удар по намеренно подготовленной точке. Этой точкой была самая высокая часть выпуклости. Ударом по ней некоторым образом предопределялось направление скалывающей для получения отщепа тонкого поперечного сечения и должной длины.
В процессе скалывания, был ли то пирамидальный нуклеус или другой предмет, площадку, по которой наносился удар, требовалось держать не горизонтально, а наклонно, под углом в 30—40°. Такая позиция позволяла наносить удары наиболее сильные и результативные. Когда же отбивная площадка нуклеуса находилась в горизонтальном положении, удар не был достаточно силен.
Если скалывание производилось с плоского (дисковидного) нуклеуса, последний было целесообразно держать скалываемой (рабочей) стороной в опрокинутой позиции.
Опытами установлено, что лучшие результаты скалывания леваллуазско-мустьерских отщепов получались тогда, когда мастер держал нуклеус в руке без опоры. В таком положении сила удара отбойником целиком тратилась на акт скалывания. Если нуклеус лежал на земле, а тем более на твердой опоре, значительная часть ударной силы расходовалась безрезультатно благодаря действию контрудара.
Не менее существенным был и угол края площадки в отношении вертикальной оси нуклеуса. Этот угол должен быть не более 95°, но лучше, если он был 90—85°. При угле площадки более чем 95° и даже при 95° необходимое скалывание не происходило.
Кроме угла отбивной площадки, необходимо было учитывать вертикальный профиль нуклеуса со стороны скалывания. При оптимальном угле площадки (90—85°) профиль нуклеуса не должен был иметь излишнюю выпуклость или вогнутость, В первом случае скалывающая могла не преодолеть массу лежащего на пути материала, и на нуклеусе оставалась только трещина. Во втором — скалывающая часть могла получить выход по кратчайшей кривой. В профиле нуклеуса, готового к скалыванию, требовалось удалять все излишки материала, затрудняющие скалывание.
Помимо вертикального профиля нуклеуса, важно было принимать во внимание и поперечное сечение его. Скалывающей обеспечивался тем более благоприятный выход» чем уже был нуклеус на шесте скалывания. На этом принципе основан переход от древнепалеолитической техники скалывания к позднепалеолитическому расщеплению призматического нуклеуса.
Качество отщепа определялось также и углом падения отбойника. Известно, что сила удара распространяется в массе кремня концентрически волнообразно, как и во всяком изотропном теле. Очень часто это можно наблюдать на кремне в форме конуса, возникшего от удара, нанесенного на расстоянии от край площадки нуклеуса. Скалывающая здесь выражена в виде замкнутой кривой вокруг глазка — точки удара. На конусе можно проследить едва заметные или хорошо обозначенные концентрические волны очень малой длины. Конус — идеальная форма скалывающей, замкнутой линии в твердой среде изотропного тела. Скалывание, расщепление и ретушь кремня основаны на умелом использовании принципа волнообразно-концентрического распространения силы удара.
Если удар нанесен в центр площадки нуклеуса, скалывающая распространяется равномерно, кругообразно-конически. Это будет симметрически замкнутая кривая, глубина которой зависит от силы удара. Если удар нанесен вблизи края площадки нуклеуса, вся сила удара будет вложена только в часть кривой, а скалывающая, захватив край нуклеуса, пойдет вглубь его. Скалывающая может расколоть нуклеус но диагонали или отколоть отцеп в зависимости от того, под каким углом будет нанесен удар надлежащей силы. Отщеп может получиться длинным или коротким, скалывающая может оказаться волнообразной. Некоторые особенности скалывающей, а следовательно и форма отщепа, до сих пор не имеют полного объяснения. Но уже сейчас остается вполне достоверным роль в этом деле угла падения отбойника и формы отбивной площадки.
Величина, т. е. длина и ширина, отцепов целиком определяется весом и величиной отбойника. Легким отбойником можно сколоть малый отщеп. Для скалывания крупного отщепа требуется соответственно тяжелый отбойник. Для скалывания крупных отщепов необходимо не только соответствие веса отбойника, но и величины его. Тяжелым, но малым по объему отбойником нельзя отколоть хороший большой отщеп. Нужен отбойник, у которого ширина рабочей части пропорциональна весу и объему.