актуальная бесконечность. До Кантора большинство математиков и философов признавало только потенциальную бесконечность, т.е. такую (строго говоря, единственную) бесконечность, которую нельзя «пощупать», нельзя охарактеризовать никаким определенным образом, например, числом. Единственное, что описывает «лик» такой бесконечности, так это ее безликая переменчивость, вечная устремленность куда-то. Потому в потенциальной бесконечности различимо разве что направление перемен, – как определил Кантор, либо рост «сверх всяких конечных границ», либо убывание «ниже всякой конечной границы малости» 26. С принятием же идеи актуально бесконечного (и привлечением вышеизложенного аппарата сравнения множеств) перед создателем теории множеств открылось нечто головокружительное: существует не одна-единственная бесконечность, да и то какая-то сомнительная, но целая иерархия бесконечностей различных классов 27, причем эта иерархия поддается достаточно строгому описанию. Открылась необъятная область, вместе с тем охваченная ясной структурой, буквально разверзлась область трансфинитного (мощности и типы порядков Кантор называл трансфинитными, т.е. сверхконечными числами), которая лежит «как бы на середине между абсолютною полнотою и конечным» (констатация Флоренского) и «заполняет обширную область возможного в познании Бога» (вторит ему Кантор) 28. Вспоминая известный афоризм Паскаля о человеке («среднее между всем и ничем») и комментируя канторовские результаты, Флоренский формулирует эту «срединность» еще и так:
«Если мы ничто перед Абсолютным, то все же мы – нравственно однородны с Ним, мы можем постигать Его <…>; мы носим в себе трансфинитное, сверх-конечное, мы – космос – не являемся чем-то конечным, прямо противоположным Божеству, мы – трансфинитны» 29.
Действительно, в содержании теории множеств (бесконечных множеств) можно указать важнейшие параллели научного опыта, здесь – опыта математического, и опыта религиозного. Только что было сказано о «нравственной однородности». Путь, по которому пошел Кантор вглубь (вдаль, ввысь) мира множеств и мира бесконечности, предстает действительно однородным и цельным. Для убедительности изложения этой характерной особенности Канторова пути мы можем взять на вооружение оценку, которой Кантор же расправлялся с нелюбезной ему идеей потенциально бесконечного: последнее, судил он, «имеет лишь отраженную реальность, всегда указывая на а<ктуально> б<есконечное>, благодаря которому оно лишь только и возможно». Да, к любому конечному числу всегда можно добавить очередную единицу, и эта нескончаемая череда указывает на целостный свой итог и возможна лишь как подступ к целому – актуальной бесконечности. Да, точно так же доступно увеличению актуально бесконечное, точно так же и трансфинитная череда указывает на новую целостную реальность в очередном ярусе иерархии бесконечностей. Да, нескончаемая последовательность все нарастающих и нарастающих актуальных бесконечностей указывает на новую целостность, Transfinitum отражает свет высшей реальности, Absolutum’а 30. Итак, устремленность и трезвление в мире нравственной жизни, нарастание величин и их ограничение сверху в мире абстрактных чисел – вот та параллель, что волновала ищущие умы от Кантора и Серапиона Машкина 31 до московских имяславцев. Ссылкой на характерные признания одного из последних мы и закончим эту часть наших заметок. В частности, в своих рассуждениях о природе личности и ее пределах (относятся к 1920-м, т.е. имяславским годам) В.Н. Муравьев дважды прибегал к «математическому сравнению» – сначала, когда он говорил о свойстве «расширения самоуглубляющейся личности» и ассоциировал его со способностью «математического ряда бесконечно умножаться и расширяться», и потом, когда подчеркивал, что «здесь мы имеем только половину задачи». Именно, писал Муравьев, в полном подобии с тем, как в деяниях математика
«для операций над числами и для самого их существования требуется, чтобы действующий закон индукции постоянно ограничивался тем, что Кантор назвал действием второго закона порождения чисел [о нем у нас уже шла речь – В.Т.] , а именно способности нашей ограничивать каждое число, постигать его… как некую целостную сущность»,
так и
«бесконечное плавание в глубинах личности мира должно… приводить к вычерчиванию в ней определенных индивидуальных областей-берегов, иерархия которых и составит содержание вечных форм или проявлений мира» 32.
Небезынтересна для нашей темы еще и такая широкомасштабная подробность. Канторово описание форм «единств-множеств», можно сказать, поневоле обескураживает представляемым запасом номенклатуры бесконечностей. В самом деле, при современном состоянии развития точных наук мы не можем продвинуться по цепочке бесконечностей дальше двух-трех (буквально) звеньев, быстро исчерпывая содержательность соответствующих примеров. Так, за областью конечных чисел следует первая бесконечность («первый числовой класс», по Кантору), соответствующая всей совокупности натурального ряда чисел, и мощность этой бесконечности суть первая трансфинитная мощность. Далее следует вторая бесконечность («второй числовой класс»), соответствующая множеству действительных чисел, и мощность этой бесконечности составляет вторую трансфинитную мощность. И это всё или почти всё. Кантор еще предположил, что максимально вообразимая «сплошность», т.е. континуум, также имеет вторую трансфинитную мощность, однако не смог доказать этого, и «континуум-гипотеза» до сих пор будоражит умы самых отчаянных романтиков от математики. Можно и дальше двигаться по лестнице бесконечностей, теория множеств это позволяет, однако у последующих трансфинитов уже нет «земных» интерпретаций 33. А к воистину раблезианскому пиршеству форм бесконечностей нетрудно подать еще и такое блюдо (сей факт строго доказан самим Кантором) – в каждом числовом классе данной мощности можно построить сколь угодно много бесконечных множеств с различными порядками 34, т.е. на иерархию бесконечностей по кардиналам прихотливо накладывается еще одна иерархия, на этот раз по ординалам… Как тут не вспомнить образ непостижимой бездны, «заключенной» и «запечатанной» единым таинственным словом (имяславцы любили цитировать молитву Манассии 35). Да, создатель теории множеств воистину окликал эту бездну.
Упоминание о трансфинитных мощностях подводит нас к последнему, еще не затронутому у нас понятию из имяславского списка Лосева. Строго говоря, алеф – это не самостоятельное понятие, а условное обозначение, название, специфическое имя для мощности бесконечного множества или, как выражался Флоренский, это «символ бесконечности». А говорить о данном имени мощности (напомним, что мощность – это число) нужно хотя бы затем, чтобы в который раз отдать дань философской чуткости самого именовавшего. В данном условном обозначении есть безусловная ценность. Наделяя именем первой буквы древнего алфавита минимальную «единицу» из «натурального ряда бесконечностей», автор имени (разумеется, это Кантор 36) не столько напоминал современникам забытую традицию буквенной передачи цифр, сколько предоставлял хороший образ для выражения глубинной связи числа и слова (или имени). В этом соединительном «и» обозначился мощный смысловой пласт, который заслуживает специального и неспешного исследования, причем не обязательно проводимого с позиций имяславия. Здесь же приходится касаться лишь ближайших слоев пласта, а именно затронуть вопрос о скрытой (глубинной) семантике терминов теории множеств. Вот «алеф» – о нем и о хранимой им идее встречи и взаимопрорастания уже сказано. Вот «мощность» – слово, которое Кантор нашел не сразу, поначалу предпочитая сравнивать множества по «высоте» 37, что тоже, кстати сказать, прелюбопытно. Недаром ему так нравилось указывать термину «мощность» латинские синонимы plenitudo («полнота», «обилие») и potestas («сила», «мощь», «ценность», «действительность», «возможность» и, наконец, «смысл») 38. Да, энергию и здоровье источает такое слово. Наконец, вот «актуальная бесконечность» и знаменательная часть данного составного термина, ушедшая в прилагательное. Заметим, что латинские переводы слов «акт» и «актуальный» передают греческие прообразы – «энергия» и «энергийный». Нетрудно видеть, что в глубинную семантику теоретико-множественной терминологии волею судеб и благодаря духовной силе интуиции Кантора легли воистину первоосновные, жизненно важные (в особенности – с позиций имяславски настроенных философов) идеи. Можно, конечно, соглашаться с лосевским мнением о том, что в теории множеств прежде всего выразилась статически-идеальная реальность (недаром мы говорили выше о формах и структуре бесконечностей, т.е. о их «неподвижном» бытии, вполне в духе представления «идеи» у Платона). Таков уж, видно, общий удел математики и реально работающих математиков 39. Однако в силу особого предмета теории множеств (бесконечность) в понятиях ее не могла не отразиться и подвижно-антиномическая, т.е. энергийная реальность. В действительности «наивная» теория множеств выказывает необычайную глубину, в ней запечатлена весть о Вышнем.
3.5. Метаматематика А.Ф. Лосева
Из Хаоса родимого
Гляди – Звезда, Звезда!..
Из Нет непримиримого –
Слепительное Да!..
Эпиграф, как известно, должен вводить и резюмировать, увлекать и останавливать, указывать начало и предвосхищать конец повествования. Он – как замкнутая кривая, где нет первых частей и нет последних, он, вернее, подобен такой окружности с неуклонно сжимающимся радиусом, в которой хоровод друг в друга переходящих точек стремится сойтись в центр, в средоточие единого вихря. Это четверостишие поэтического сборника Cor ardens поможет (должно помочь) нам сегодня, когда из глухих глубин небытия вдруг является новый, неизвестный пласт творчества выдающегося мыслителя, и сам момент важного обретения нашей культуры получает символическую окраску подобающей, соразмерной яркости. Четверостишие, будем надеяться, поможет вычленить и нечто главное в этом творчестве, мощном и длительном, разностороннем и, вместе, необычайно цельном, в творчестве еще и воистину светоносном. Свет упомянут не случайно, не «для образности»: всякая мыслительная конструкция, всякое умопостроение и умонастроение у Лосева пронизаны универсальной интуицией, а именно интуицией «слепительного Да», – в мире нет ничего кроме света, а тьма и любые прочие, по излюбленному авторскому выражению, «степени затемнения» призваны только оттенять, окаймлять, обрамлять четкие контуры и видимые точки, являя неразрывное единение темного фона и светлого лика. И разум призван равноправно сопрячь Тьму и Свет, Хаос и Логос, должен обнаружить их хаокосмическую Гармонию, – это фундаментальное положение лосевского творчества счастливо выражают стихотворные строки Вячеслава Иванова.
Далее нам остается последовать законам писательства и, среди прочего, по возможности полно развернуть на большем текстовом пространстве богатые потенции эпиграфа.
1. Недостающее звено
Все философско-математические и логические исследования, представленные в томе «Хаос и структура» (М., «Мысль», 1997) – а это незавершенный большой трактат «Диалектические основы математики», небольшой фрагмент «Математика и диалектика» и две законченные работы «О методе бесконечно-малых в логике» и «Некоторые элементарные размышления к вопросу о логических основах исчисления бесконечно-малых», – были созданы в 1930 – 40-х годах, и ни одно из них не знало печатного станка при жизни автора. Так что перед нами действительно предстает некое недостающее звено творчества Лосева. Попробуем прежде всего разобраться, чем же была вызвана эта своеобразная вспышка логико-математической активности философа, вспышка, зримые свидетельства о которой дошли до нас только сейчас.
Конечно, тут немаловажную роль сыграли известные внешние обстоятельства жизни Лосева, арест в 1930 году и последующая сталинская «перековка». Лагерный опыт явственно учил, что дальнейшая разработка идей, выдвинутых в знаменитом «восьмикнижии» 20-х годов, была бы попросту самоубийственна, поскольку она по необходимости требовала острых обобщений социологического, культурологического и богословского характера. Нужно было искать новые темы и целые области приложения творческих сил. Этот поиск, похоже, начался еще в тюрьме, где Лосев «прошел подробный курс дифференциального и интегрального исчисления, под хорошим руководством» 1, а уже в Свирьлаге писалась (вернее, сочинялась и удерживалась в уме) книга по диалектике аналитических функций. В архиве Лосева, надо отметить, хранится небольшая пачка разрозненных листков, относящихся к лагерной поре его жизни. Лихорадочные, сделанные в очевидно не подходящих не только для творчества, но и просто для элементарного письма условиях, эти наброски проливают свет на раннюю историю создания тех же «Диалектических основ математики» и верно свидетельствуют как о научном, так и о гражданском подвиге их автора.
Впрочем, в биографии Лосева был короткий период, когда внешние условия начинали складываться, казалось, вполне благоприятно для некоторых его творческих планов. Таковым было время недолгой работы на философском факультете Московского университета в начале 40-х годов, когда там создавалась кафедра логики. В архиве Лосева сохранился машинописный «План научно-исследовательской работы философского факультета МГУ на 1943 г.», где по разделу «Логика» даже планировалось издание работы Лосева объемом в три печатных листа. Довольно обширная статья под названием «Логическая теория числа» действительно была написана (насколько можно теперь заключить, она представляла собой переработанные начальные главы «Диалектических основ математики»), однако ни в 1943 году, ни потом при жизни автора так и не публиковалась 2.
Та же участь ожидала и все остальные сочинения, рожденные по ходу логико-философского «штурма»; его протяженность во времени вышла краткой, он сошел на нет после изгнания Лосева из университета в 1944 году в результате доноса и обвинения в «идеализме». Так пришлось оставить темы «математические» и в дальнейшем сосредоточиться – уже более удачливо – на «истории античной эстетики». Надежды на относительную нейтральность логико-математических тем оказались иллюзорными, и обо всем размахе лосевских замыслов и результатов в этой области может судить лишь современный читатель. В который раз подтвердилась печальная истина, со знанием дела констатированная П.А. Флоренским, о неизбежности отставания по фазе по меньшей мере на полвека между взлетом одинокого творчества и признанием заслуг творца медленно дозревающим обществом.
Кроме обстоятельств внешнего порядка сознательные логико-математические «экскурсы» диктовались и внутренней потребностью творческого бытия философа. Скажем так: работа, проделанная им на отрезке жизни вплоть до фатальной «Диалектики мифа», позволяла не только с уверенностью указывать на «трех китов», несущих, по Лосеву, весь груз миропонимания, – Имя, Миф, Число, – но и точно определяла программу научных исследований. Именно вслед за (или, вернее, вместе с) «философией имени» и «абсолютной мифологией» должна была строиться и «философия числа». Но в строительстве этом существенно, подчеркнем, различался род действий, о чем надобно судить с должной бережностью и пониманием.
Очевидное тяготение Лосева к систематическому методу диалектики с опорой на упомянутую выше триаду позволяет твердо соотнести его с давней и необычайно стойкой традицией. Первые звенья в этой цепи преемств составляют Платон и Аристотель, далее следуют неоплатоники во главе с Плотином и Проклом, затем – Николай Кузанский, потом – немецкие идеалисты в лице Шеллинга и Гегеля. Наконец, новое и последнее звено было ковано на кузне отечественной мысли… Конечно, диалектическим методом блестяще владели многие из лосевских учителей и современников, вспомнить хотя бы Вл. Соловьева, Флоренского, Франка, Карсавина, Ильина, Муравьева. Пожалуй, лосевский вклад и на этом фоне выделяется своим идейным монизмом, непоколебимой последовательностью в приложениях, возведенным в принцип универсализмом. Но не только. Здесь еще явлен как раз итог, фактически произнесено последнее слово. По констатации В.М. Лосевой, написавшей интереснейшее предисловие к «Диалектическим основам математики», в «случае Лосева» мы имеем дело с одним из «завершительных, резюмирующих умов», каковые «всегда появлялись в конце великих эпох для того, чтобы привести в систему вековую работу мысли и создать инвентарь умирающей культуры, чтобы передать его новой культуре, только еще строящейся» (6 – 7) 3.
Теперь нужно уточнить характер означенного образа платоновской цепи, вернее сказать, цепи платоновско-лосевской, если брать ее крайние звенья. Когда в 20-х годах систематизирующая мысль Лосева касалась проблем идеологических, социальных и религиозных, платонизм неизбежно получал (когда – скрытое, когда – открытое) православное переосмысление и критику. «Последний русский диалектик» не порывал с двухтысячелетней традицией, но указывал ее недостатки и даже опасности (для непосредственного жизнепонимания) вроде, скажем, безличного онтологизма или пантеизма. Потому в сферах Имени и Мифа идейный вклад упомянутой цепи нуждался в принципиальных поправках, оговорках и дополнениях. Когда же в 30 – 40-х годах Лосев сосредоточился на философских вопросах математики и логики, полагаясь, как мы уже предположили, на относительную нейтральность этой области, прежняя неоплатоническая техника мысли уже не требовала качественных изменений. В сфере Числа великая цепь укреплялась не столько наращиванием, сколько отделкой в некоторых старых звеньях. По приложении старинного и даже древнего метода, в свете незыблемых «принципов» недостающие обобщения получали именно «факты» той обширной области точных наук, что традиционно считалась самой структурированной и вообще развитой областью знания Нового времени.
Тени великих предшественников здесь и там встают со страниц логико-математических исследований Лосева. Ажурная архитектоника «Логической теории числа», безусловно (согласимся с В.М. Лосевой) «одного из шедевров в философской литературе, занимавшейся числом» (12), она соразмерна, сомасштабна, соприродна триадическим построениям «учения о бытии» из «Науки логики» Гегеля. Когда в «Диалектических основах математики» обнаруживаются веские суждения о «множестве всех чисел» и за таковым закрепляется термин «тотальность», в родственном ряду мы тут же находим «единство множества», Totalität Шеллинга. И в той же книге прослеживая логическую «дедукцию геометрических фигур», нужно обязательно вспомнить более ранние построения «Античного космоса и современной науки», которые выводят нас прямо к Проклу с его комментариями «Элементов» Евклида. Чтение философского эссе «О форме бесконечности» (523 – 533) почти невольно заставляет вспомнить трактат «Об ученом неведении» Николая из Кузы – столь, можно сказать, равномощны эти два текста. Во всяком случае, там, где затрагиваются одни и те же темы, разительно совпадают и результаты. Даже тогда, когда в своем диалектическом освещении нескончаемой математической «эмпирии» Лосев обращается к проблемам, еще не ведомым его предшественникам (несчетность в теории множеств, типы логик и геометрий, теория вероятностей и т.д.), ему, кажется, доставляет сил спокойная уверенность, что античные неоплатоники и немецкие диалектики – доведись им творить сегодня – воспарили бы в тех же логических «эмпиреях», где в реально-историческом одиночестве пребывал он, их российский vis-á-vis.
2. «В траншеях ленинской диалектики»
Приступая теперь к более подробной характеристике лосевской «философии числа», мы воспользуемся излюбленным приемом ее автора, методом «меонального отграничения»: чтобы подвести к какому-нибудь «это», нужно всесторонне рассмотреть «то, что не есть это». Приверженность подобной интеллектуальной технике (напомним, что ее применял Сократ и особенно привечали неоплатоники) лишний раз показывает и доказывает действительную цельность творчества Лосева, который предстает диалектиком и по содержанию полученных результатов, и по стилистике способа добывания таковых.
Итак, каким же было «Нет непримиримое» в ту именно пору, когда творилось «слепительное Да» этого (воспользуемся одной из самохарактеристик) «маленького философа в [конечно, большом. – В.Т.] Советском Союзе»? Для тогдашней ситуации характерен заголовок небольшой заметки из газеты «Вечерняя Москва» за 10 апреля 1929 года: «В траншеях ленинской диалектики» 4. В статье торжественно извещалось о наступившей решающей схватке (как раз шла 2-я конференция марксистских научно-исследовательских учреждений) между отечественными «механистами» и «диалектиками». Здесь нас не занимают подробности этой мало научной и не без зловещих оттенков дискуссии, приведшей в конце концов к прямым репрессиям многих ее участников, как «победителей», так и «побежденных». Важнее отметить специфически «фронтовую» риторику тех лет, а также тот факт, что как раз от данного репортажа с места «боевых действий» следует начинать отсчет 5 всей череды многочисленных выступлений в тогдашней печати, где так или иначе ругательно поминался «идеалист и мистик Лосев». После заметки «Вечерней Москвы», впервые изложившей доклад А.М. Деборина (с него 8 апреля 1929 года начиналась упомянутая всесоюзная конференция), появился короткий комментарий в «Правде» за 11 апреля. Чуть позже уже сам доклад под названием «Современные проблемы философии марксизма» был опубликован в полном объеме сначала «Вестником Коммунистической Академии», затем тремя отдельными изданиями в 1929 и 1930 годах, уже вместе со стенограммами прений по докладу.
Но обратимся к заметке в «Вечерней Москве». Ее автор рисует картину «ожесточенных боев на философском фронте», в ходе которых «воинственные материалисты-диалектики» вынуждены не только наносить «сокрушительные удары противникам на „внутреннем фронте“, извращающим основы материалистической диалектики», но они также успешно «сражаются с исконным внешним врагом – идеализмом». Оказывается, «значительные кадры идеалистов, не сложив оружия, окопались в ряде наших учреждений (например, в ГАХНе) и производят вылазки в качестве „вольных стрелков“. Тов. Деборин подробно характеризует суть „средневековщины“ одного из таких „стрелков“ – Лосева, стоящего на позиции „диалектического“… идеализма». Действительно, целые страницы вступительной части программного доклада А.М. Деборина отданы разбору учения этого «реставратора» диалектики (цитируются книги Лосева «Античный космос и современная наука» и «Философия имени», вышедшие в 1927 году), который – неслыханно! – «предпочитает „чистую диалектику“ Плотина и Прокла материалистической диалектике Маркса, Энгельса и Ленина». Конечно же, заключает докладчик, эта «лосевская идеология отражает настроения самых реакционных элементов нашей страны» и с тем убеждает своих коллег, что «борьба с идеализмом и мистицизмом является нашей первой обязанностью» 6.
Как видим, размежевание обозначалось явственно и недвусмысленно. «Новая русская философская система», свидетельствующая своим появлением, «что и внутри России жив дух истинного философского творчества, пафос чистой мысли, направленной на абсолютное» (воспроизводим констатацию С.Л. Франка 7, который в эмигрантском далеке совсем иначе откликнулся на те же две книги Лосева, что год спустя «прочел» А.М. Деборин), понадобилась советским философам скорее для сведения счетов «со своими». В этом отношении весьма показательны материалы дискуссии по деборинскому докладу, где торжествующие «диалектики» бросают упрек сконфуженным «механистам», поскольку последние не проявили должной партийной бдительности и не объявили бой «идеализму шпетов и лосевых», в то время как «диалектики» уже начали окопную войну на «внешнем» фронте… Заметим, что первые выпады против Лосева исходили именно из лагеря, где еще были способны (хотя бы втайне) оценить реальное значение «чистой диалектики». Сохранились свидетельства, что Лосев строил планы объяснения с Дебориным, желая установить с ним взаимопонимание на почве научной (неидеологизированной) мысли. Показательны в этой связи некоторые сочувственные отклики западной, прежде всего эмигрантской прессы, на итоги философской батрахомиомахии в Советском Союзе, когда отмечалось, что «деборинцы ценили специфичность философии», «в их работах воскресали основные философские категории» (П. Востоков), обнаруживались «тенденции к идеализму» и чуть ли не намечалось «обособление философии от политики» (Н. Бердяев) 8.
Итак, даже в относительно либеральные времена конца 20-х годов, когда «никакого классового содержания» еще можно было не находить «ни в Пифагоровой теореме, ни в правиле Ампера, ни в законах Менделя» и тем самым еще сопротивляться «солнечной истине марксизма» 9, уже тогда лосевская философская система вообще и его «философия числа» в частности были обречены на отторжение. Что ж тогда говорить об интеллектуальной атмосфере 30-х годов, когда философское освещение проблем математики «обогатилось» борьбой с «егоровщиной» и «лузинщиной» (заметим, что Д.Ф. Егоров и Н.Н. Лузин входили в круг близких друзей Лосева) и когда, по определению современных исследователей, «пышным цветом расцветает славословие вождю» и побеждают «сдерживаемые до того начетничество, догматизм, конъюнктурщина, раболепие, беспринципность, аморальность, доносы друг на друга» 10. И какие же труды, спросим мы, полагал издавать Лосев именно в эти годы? В его «Диалектических основах математики» нет не только какого-то хотя бы слабого намека на идейное сближение, к примеру, с Энгельсовой «Диалектикой природы», тут нет даже формальных и чисто ритуальных отсылок к трудам классиков марксизма-ленинизма. А каким образом он цитировал таковых, если дело к тому все-таки шло, как в работе, скажем, «О методе бесконечно-малых в логике»? Все «нужные» и злободневные цитаты компоновались в локальные области вступительной части (удобно проверить лояльность автора, не утруждая себя чтением содержательной части текста) или в специальный отдельный параграф, где механически складируются высказывания имярек без всяких оценочных суждений и опять-таки без реальной увязки с собственными построениями. Вообще исследователям «катакомбной» составляющей отечественной философской мысли пример творчества Лосева дает много важнейшего материала, скажем, о той замечательной иронии, с которой он явочным порядком превращал некие идеологемы из разряда основополагающих в маргинальные, как, впрочем, и обратно, – вспомним страстное анафематствование врагам имяславия, укрытое в недрах обширных примечаний книги «Античный космос и современная наука».
Лосев, конечно же, желал видеть свои работы опубликованными, потому должен был так или иначе кодифицировать их на языке, что господствовал в обществе. Однако «перевод» принципиально не искажал сообщаемого. Вот только один пример из истории создания «Диалектических основ математики». В архиве философа сохранился небольшой машинописный текст с перечнем поправок по данной книге, которые рассматривались в ответ на критические замечания С.А. Яновской и относились, можно предположить, к середине 30-х годов. Автором предусматривались некоторые коррективы «в целях большей ясности» и вносились «чисто математические изменения» (в изложениях аксиомы Паша, проблем упорядочения множеств, гильбертовского формализма и др.), а также изменения «ради избежания политических кривотолков» и «в целях подчеркивания философского объективизма» книги (анализ дошедших до нас материалов показывает, что правка была минимальной и носила сугубо косметический характер). В заключение же перечня фиксировалось незыблемое и для нас, теперешних читателей, поучительное: «Оставлены без изменения все места, где идет чисто логический анализ. И вообще защищается логика как чистая наука». Обнаружился в архиве и образчик неизбежной реакции на подобную установку – в виде отзыва на «Диалектические основы математики» за подписью П. Жаровой. Тогдашний критик почему-то «отказывается видеть какой-нибудь вразумительный смысл» в высказываниях философа, но зато уверенно замечает, что «автор исходит из идеалистических, можно смело сказать, религиозно-мистических установок, проповедуя которые поднимается подчас на ступень подлинного поэтического пафоса». Достаточная временная дистанция и, главное, возможность напрямую познакомиться с учением Лосева дает нам все возможности убедиться, насколько его критики были пристрастны и сколь точно сама эта критика характеризовала обстоятельства момента высказывания.
3. У последних «как» и «почему»
Пожалуй, о самой глухой «тьме меона» сказано достаточно. Заметнее содержательным обещает быть рассмотрение более дружественного Лосеву окружения. Будем иметь в виду деятельность тех интеллектуалов, которые группировались тогда вокруг уже немногочисленных (легальных и не-) очагов свободной мысли, и в частности вокруг того, что называют Московской математической школой и московского же, но уже нелегального, кружка имяславцев. Однако такое рассмотрение приходится предварять одной важной оговоркой: данный период отечественной истории еще недостаточно изучен. К примеру, лишь совсем недавно были предприняты первые попытки описания реальной духовной атмосферы в упомянутой математической школе 11, весьма, казалось бы, известной школе. Самое интимное и самое важное получало тогда только устную форму, в публикации или в переписку попадали лишь отдаленные намеки и недомолвки, а доверенные бумаге мысли, даже не самые радикальные, вполне могли удостоиться «депонирования» в хранилищах Лубянки 12. Потому многие предлагаемые ниже сближения и сопоставления носят преимущественно реконструктивный, гипотетический характер – нужно это учесть.
Прежде всего, взаимно обогащающимися перед нами предстают творческие и личные отношения Лосева с математиками Д.Ф. Егоровым и Н.Н. Лузиным. От первого Лосев получал бесценные уроки строгого и сжатого изложения математического материала, от второго – особый интерес к теории меры и проблематике измеримости, а от обоих вместе – важные интуиции теории множеств и функционального анализа. Признанные лидеры Московской математической школы своим творчеством блестяще являли тот самый союз, о коем столько хлопотал и Лосев, – «тот союз философии и математики, который так част в интуитивных глубинах у настоящих философов и математиков и который так редок у тех, кому суждено повторять и распространять философские и математические идеи, но не создавать их впервые», читаем мы в «Диалектических основах математики» (426).
Здесь представляется уместным сказать несколько подробнее о некоторых особенностях духовного пути Н.Н. Лузина. Известно, что еще молодым человеком он пережил мировоззренческий кризис, связанный с необходимостью выбора специальности в науке и, главное, с ранним прикосновением к острейшим проблемам оснований математики (теоретико-множественные парадоксы, проблема континуума). Он отшатнулся от разверзшейся бездны, и даже многолетняя дружба с П.А. Флоренским не принесла облегчения. В своем отчаянном письме к нему Н.Н. Лузин писал, отрекаясь от прежних надежд: «Вы ищете бестрепетного сердца непреложной Истины, оснований всему <…>, а я… я не жду последних „как“ и „почему“, и, боясь бесконечного, я сторонюсь его, я не верю в него» 13. Он обманывал себя утешением, что сделался «специалистом» и «стал просто математиком» (констатация из той же переписки с П.А. Флоренским), отчего профессия его, конечно же, только выиграла: многие результаты Лузина вошли в классику мировой математики. Однако те самые «как» и «почему» вновь встали перед ним, «философом от математики» (лузинское самоопределение), когда он близко познакомился с Лосевым – «математиком от философии» (как определили бы мы). Сама жизнь подтолкнула их навстречу друг другу и как бы дополнила их автономные существа до некоего целого, пусть и на короткое время и для разрешения, может быть, одного-единственного вопроса, но зато какого – о природе бесконечного. О чем они спорили вечерами в квартирах на Арбате у Лузина или на Воздвиженке у Лосева? Для Лузина воистину личной и воистину уязвляющей представала «область загадок континуума», разрешить которые он хотел, положив все силы на «уничтожение идеи актуальной бесконечности». И – полный крах вместо ожидаемого триумфа 14. Для Лосева идея актуальной бесконечности не только изначально близка: «бесконечность в любых ее смыслах, и в научно-математическом, и в философском смысле, была для меня подлинной реальностью, включая сюда и многие мои бытовые переживания» 15. Она еще подлежала философскому обоснованию, которое, надо признать, автору «Диалектических основ математики» вполне удалось. Потому и понятно, что лосевские рассуждения о подлинно диалектическом, иерархийном устройстве мира бесконечностей или о структуре континуума (да, сама «бесструктурность», сама «неразличимость» и «сплошность» имеют, по Лосеву, свой особый и узнаваемый лик!) выражены в столь торжественной тональности. Так разыгрывается драма идей в ее кульминационных точках.
Далее, неизбежно приходится говорить об идейном сходстве и преемстве, если в кругу современников Лосева выделять фигуру уже упоминавшегося П.А. Флоренского. Известно, например, сколь высоко Лосев ставил книгу «Мнимости в геометрии» (1922) и неизменное стремление ее автора к принципиальному единению философии и математики. Безусловно близкими для Лосева предстают пифагорейско-платоновские по своим основаниям взгляды Флоренского на число (в начале 20-х годов они получили обобщение в работе «Число как форма»), а также трактовка им канторовской теории множеств (особенно показательна ранняя – 1904 года – статья «О символах бесконечности»). Сближают мыслителей и многие более общие установки: предпочтение диалектики иным философским системам (откуда, к примеру, бодрое и даже деловое восприятие логических антиномий), лишенное формалистики отношение к познавательным категориям («конкретная метафизика» одного, «абсолютная мифология» другого), понимание не только мировоззренческих, но и мироустроительных функций символизма (оба – активные разработчики имяславской доктрины), готовность рассматривать любые факты и явления в единстве структурно-смысловых (Логос) и выравнивающе-десемантизирующих (Хаос) процессов. Да, их одинаково волновали именно последние «как» и «почему», мысленный взор каждого устремлялся в одну и ту же феноменологическую даль, вперялся в одну и ту же глубинную точку. А различие – как же без него, – внешнее различие скорее всего пролегало на сугубо стилистическом уровне. Потому-то Флоренскому, засвидетельствовано, грезились зримые «корни вещей», каковые он «решительно отличал от бесструктурной мажущейся черной массы» 16, потому-то Лосев прозревал «логические скрепы бытия» там, где большинству рисовалось «безумное марево» и «сплошной туман неизвестно чего» 17. Поневоле играли свою определяющую роль очевидные несовпадения на уровне психологических особенностей этих личностей. Один, как истинный естествоиспытатель-коллекционер, больше любил разнообразие и неповторимость представших пред ним «реальных абстракций», потому в письмах из Соловков, припоминая важнейшее из содеянного, Флоренский особо выделял исследования «индивидуальности чисел», свое «изучение кривых in concreto» и прилагал к письмам скрупулезно и любовно выполненные рисунки водорослей 18 – живых в такой же мере, как математические объекты, и, подобно последним, столь же изощренно-структурных. Оттого другой, прирожденный классификатор и любитель категорий, вдохновенно строил свои «таблицы» подобно Линнею или Менделееву, потому в заметках из ГУЛАГа (конечно, в лагерной изоляции, вдали от нивелирующего влияния библиотек может явственнее проступить глас личностной, нутряной сути) Лосев набрасывал схемы именно систем и типологий, первым делом – числовых.
Нельзя не вспомнить здесь и о фигуре В.Н. Муравьева. Он оставил яркий след в публицистике начала века, примыкая к группе авторов «Вех» и участвуя в другом знаменитом сборнике – «Из глубины», успел издать замечательную философскую работу «Овладение временем как основная задача организации труда» (1924). Однако значительная часть его творчества, остающаяся доныне не опубликованной, явственно свидетельствует: одновременно с Лосевым и рядом с ним трудился мыслитель, интересы которого особенно тяготели к философским основаниям математики. Имя и число, ипостасийный характер учения Георга Кантора, последовательное развертывание числового принципа в диалектическом синтезе единства-множественности – вот только некоторые из тем, затронутых Муравьевым вместе (повторим – одновременно и рядом) с Лосевым. Что же касается нюансов и различий в подходах к этим и подобным темам «философии числа», то их, конечно, надлежит детально обсуждать лишь после должной публикации работ Муравьева 19. Поэтому мы укажем разве лишь на одну примечательную перекличку. Она связана с главой «О форме бесконечности» из «Диалектических основ математики». Стилистика главы определенно тяготеет к самодостаточной округлости эссе, здесь очевидна заостренность провозглашаемых императивов (совершенно неожиданная среди подчеркнуто нейтрального содержания окружающих глав) и явственен публицистический напор. Иными словами, данный текст носит «вставной» характер и невольно заставляет вспомнить о знаменитых «взрывчатых гнездах» (удачное определение С.С. Хоружего) в повествовательной структуре «Диалектики мифа». Откуда же пришло это «взрывчатое» рассуждение? «Мы изменим природу и космос» (533) – менее всего нужно читать эту декларацию как марксистский лозунг о переделывании действительности, но прежде всего нужно услышать в ней голоса с имяславских собраний 20-х годов. Нужно прислушаться к свидетельству одного из участников таковых, который утверждал о нераздельности субъекта и объекта, мысли и действия, а потому и «основной задачей имяславия» ставил «создание гармонической системы органов осуществления имен человеческих и объединение их в Имени Божьем», который взывал:
«Имя славие, чтобы сохранить то, чего оно достигло, должно стать Имя действием» 20.
4. Аксиоматика и метаматематика
Остается рассмотреть логико-математические работы Лосева, взяв их как целое и как некую, скажем, световую точку на оттеняющем ее фоне мировых исследований в области оснований математики. Такое рассмотрение правомерно по меньшей мере по двум причинам. Во-первых, к началу 40-х годов, когда лосевская «философия числа» приняла известную нам форму, многое существенное в данной области уже произошло и о многом главном сам Лосев имел вполне ясное представление (иными словами, точку на фоне помещать допустимо). Уже не только был исчерпан арсенал наивно-эмпирических определений понятия числа (от Евклида до Локка), была не только создана канторовская теория множеств и достаточно выявлены ее парадоксы, но и выдвинуты едва ли не все идеи для их преодоления 21. Почти завершился длинный и трудный путь от Principia mathematica А. Уайтхеда и Б. Рассела (1913) к «Основаниям математики» Д. Гильберта и П. Бернайса (1939), уже начиналась (в том же 1939 году) многолетняя многотомная сага Никола Бурбаки, и уже был получен основной результат К. Гёделя (1931), указующий подобным титаническим усилиям нежданно убедительный предел 22. Во-вторых, эта проделанная целой армией мыслителей работа лишний раз убеждала самого Лосева в том, что подлинно философское осмысление математического материала еще слишком далеко от завершения и что «философию числа» можно и должно строить – ему, здесь и теперь (а нам, следовательно, точку и фон необходимо различать).
Различать так различать. Прежде всего, лосевское понимание природы математических объектов максимально чуждо (еще не вполне изжитому тогда в науке) психологическому подходу, выводящему представление о числе непосредственно из некоторого комплекса переживаний субъекта. Автором «Диалектических основ математики» отрицалась и куда более известная, а для отечественной философской общественности советского периода даже едва ли не единственная, доктрина о научных, в том числе математических понятиях как результате абстракции, отвлечения от материальной действительности. При весьма почтенном возрасте – уже после Аристотеля «математические предметы» надо было рассматривать, «полагая что-то обособленно от привходящих свойств» (Met. 1078 а 15), – и при наличии непрестанно возобновляемой череды апологетов (здесь видное место занимала как раз С.А. Яновская, один из главных идейных оппонентов Лосева), надо подчеркнуть, метод абстракции всегда страдал принципиально важным дефектом: сама установка на абстрагирование имплицитно содержит знание именно того понятия, которое надлежит определить. Это есть, как известно, логический круг. Отметим к случаю, что прямую борьбу с аристотелевским пониманием числа как абстракции Лосев проводил в работах «Диалектика числа у Плотина» (1928) и «Критика платонизма у Аристотеля» (1929) 23. В этих специальных античных экскурсах он приглашал современного читателя вернуться к старинному спору между Платоном и Аристотелем о природе числа, чтобы заново рассмотреть аргументы сторон и осознанно реабилитировать платонизм в математике.
Не столь однозначно отрицательным было отношение Лосева к логицизму. С одной стороны, ему безусловно импонировали начинания некоторых выдающихся ученых, приступивших на рубеже XIX и XX веков к строительству оснований математики на аксиоматических принципах. Действительно, подобно тому как приверженцы методов Пеано и Гильберта получали многочисленные математические истины из немногих базовых утверждений-аксиом, так и Лосев последовательно (от немногих содержательных посылок ко многим формальным и неформальным следствиям) выводил и отдельные математические понятия, и развернутые теоремы, и целые типологии математического знания. Громадное древо математики произрастает из малого зерна, с нею по мере роста развертываются и ее аксиомы. Тут действительно уместны высказывания подобного «ботанического» окраса, ибо сама аксиоматика, по Лосеву, «основана на последовательном созревании категорий» (404). Однако, с другой стороны, для него были неприемлемы многие изначальные, родовые особенности гильбертовской школы. Это и демонстративный формализм, т.е. сосредоточение на проблемах непротиворечивости вывода при игнорировании содержательных интерпретаций (для философа, многому научившегося у В.С. Соловьева, подобная позиция попросту безжизненна), это и установка на строго обозримые «финитные» методы рассуждений (потому формалистам предписывалось навсегда «изгнать» важнейшую идею актуальной бесконечности), это, наконец, рискованная самозамкнутость гильбертовской теории доказательств. Последняя особенность требует отдельного комментария.
Гильбертовская программа спасения классической математики от парадоксов, по определению С. Клини (1967), состоит в следующем: математика «должна быть сформулирована в виде формальной аксиоматической теории, после чего следует доказать ее непротиворечивость, т.е. установить, что в этой формальной аксиоматической теории нельзя доказать противоречие»; сами доказательства при этом становятся «предметом специальной математической дисциплины, названной Д. Гильбертом метаматематикой, или теорией доказательств» 24. Данная программа полагалась к реализации для арифметики, функционального анализа и, в перспективе, геометрии. Уже над отдельными фрагментами математики старательно возводились ажурные конструкции гильбертовой метаматематики (это оказалось изнурительно трудным занятием), когда подоспели знаменитые теоремы Гёделя. Здесь выяснилось, во-первых, что во всякой математической теории можно сформулировать вполне осмысленное (правильное), но недоказуемое и, вместе, неопровержимое утверждение, т.е. внутри всякой такой теории, содержательно достаточно богатой, гарантировано присутствие сомнительной ее составляющей. Потому доказательство «изнутри» невозможно. Выяснилось, во-вторых, что непротиворечивость данной формальной теории доказывается только в рамках иной, более развернутой формальной теории, та в свою очередь нуждается в новом расширении, и т.д. Потому доказательство непротиворечивости «извне» всегда незавершимо. Таким образом, было строго доказано наличие принципиальных ограничений на строгость доказательств в математике. Это фактически указывало на необходимость выхода за пределы метаматематики (по Гильберту) в объемлющие ее области, причем по двум путям: либо пытаться преодолеть барьер, поставленный результатами Гёделя, за счет отказа от прежнего экстремизма и создания новых формальных методов и повторного (через них) обращения к проблеме существования математических объектов, либо развивать более содержательную «метаматематику», действительно конструируя такие объекты из некоторых первооснов и уже не прибегая к математическим формализмам. Первым путем и по сей день следуют многие специалисты по основаниям математики 25, по второму пути пошел Лосев и больше, кажется, никто.
Тут у нас настает момент уточнения терминологии. В самом деле, насколько правильно будет связывать «метаматематику» впрямую с именем Лосева? Ведь мы знаем, что сам автор называл свое учение либо, вполне определенно, «диалектическими основами математики» (как в названии основной своей книги по философским вопросам математики), либо, вполне общо, «философией числа» (этим обозначением мы и сами уже пользовались в предыдущем изложении). Кроме того, термин еще и «занят» под название сугубо математической дисциплины, введенной, как сказано, Давидом Гильбертом. И все-таки смысловой пласт этого термина «метаматематика» слишком богат и ценен, чтобы отказываться от него, доверяясь лишь формальным доводам.
Заметим прежде всего, что построения Лосева нигде не расходятся с математическими данными. Автор даже с некоторой (методологически оправданной) назойливостью и монотонностью вновь и вновь показывает, где и как его содержательная аксиоматика, его «основоположения числа» естественно перерастают в аксиомы и теоремы самой математики. Можно сказать, философская метаматематика Лосева проделывает свой отрезок пути и заканчивается там, где начинает собственно математика, – в изощрениях профессионалов-нефилософов. Логически Лосев оказался раньше, впереди, прежде специалистов по математике и ее основаниям. Исторически имелась уже математика со всеми ее достижениями, принципиальными кризисами, необозримостью тем и предметов, когда явились на свет (точнее, от света, «в стол» московского одиночки) построения новой метаматематики. Эта ситуация определенно повторяет одну весьма давнюю историю – вспомним происхождение явно родственного «метаматематике» термина. Последний возник случайно, когда Андроник Родосский (I в. до Р.Х.), заново упорядочивая и переписывая труды Аристотеля, вслед за группой сочинений «о природе» (ta phisika) поместил другую группу под условным названием «то, что после физики» (ta meta ta phisika). С тех пор наука, «исследующая первые начала и причины» (Met. 982 b 10) и самим Аристотелем величаемая «первой философией», стала «метафизикой». То, что в материальном мире занимало локус «после», в мире идей оказалось «до».
Впрочем, это только аналогия, пусть и полезная. О самом прямом вхождении лосевской «философии числа» (как метаматематики) в традицию «наук о первоначалах», как и о справедливости притязаний на многообещающую семантику греческой приставки «мета», легче судить, если привлечь к нашему терминологическому рассмотрению книгу С.Л. Франка «Предмет знания» (1915). Автор книги ставит перед собой задачу построения единой «теории знания и бытия», предпочитает называть ее «не онтологией, а старым и вполне подходящим аристотелевским термином „первой философии“», себя относит опять-таки «к старой, но еще не устаревшей секте платоников» и особо выделяет в последней фигуры Плотина и Николая Кузанского 26. Не правда ли, тут узнаются и предпочтения Лосева? Но еще больше согласий и перекличек обнаруживается в главе «Время и число» книги Франка. В основу построений здесь кладется «всеединство» («единство целого», «единство единства и множественности»), которое и рассматривается как тот «подлинный источник, из которого может быть выведено понятие числа», одно из основных понятий «первой философии». Это всеединство – источник единственный, ибо только на этом пути не возникает логический круг, ибо только отправляясь от всеединства, замечает Франк, «мы действительно не предполагаем математических понятий единого и многого, а восходим к тому, в чем, как таковом, этих моментов еще нет и из чего они должны возникнуть» 27. Далее следовало непосредственное «выведение числа из всеединства». Именно этой части «Предмета знания» Лосев посвятил специальный комментарий в книге «Музыка как предмет логики» (1927), где он строил концепцию числа с опорой на пример трактата Плотина (Эннеады VI.6 «О числах») и обнаруживал согласованность конструкций – своей, Франка и Плотина. Это и неудивительно: «одни и те же предпосылки приводят при правильном методе и к тождественным результатам» 28.
Лосевская метаматематика, в основе которой лежат глубокие неоплатонические интуиции, получала, таким образом, мощную поддержку и примером непосредственного предшественника. Но этого мало. В своем построении и анализе «числовых структур бытия» Лосев сумел избежать одного существенного перекоса «первой философии» по Франку, на который в свое время было указано некоторыми наиболее проницательными критиками. Так, в рецензии на книгу «Предмет знания» Н.А. Бердяев отмечал неоправданный «монизм» теории Франка, подчеркивал упрощенность решения проблемы «изменения, творческого движения, возникновения нового, небывалого», напоминал о неустранимом присутствии во всеединстве не только «света» как творящего начала, но и «тьмы», «темных волн безосновной основы бытия», и в итоге определял: «Знание потому имеет творческую природу, что оно должно одолевать этот вечный напор тьмы, пронизывать его светом, оформлять его изначальный хаос» 29. Для Лосева было уже естественно относиться к извечной «меональной тьме» не только с пониманием, но и чрезвычайно конструктивно: «из этого становящегося мрака как из некоей глины будем созидать те или иные смысловые фигурности» (501), – возглашает он фундаментальный принцип строительства математических объектов и повсеместно проводит его в практике своей метаматематики. Применительно совсем к другой области знания, еще в «Диалектике художественной формы», лет за десять до «Диалектических основ математики», легко отыскиваются те же мотивы и установки. К примеру (тоже почти инструкция по применению):
«В сфере смысла, где слиты в единое и сплошное тождество категория и ее внутреннее инобытие, вполне позволительно выделять поочередно то самую категорию, подчиняя ей ее инобытие, то ее инобытие, подчиняя ей его категорию» (здесь речь шла о классификации искусств по «категориальному» и «меональному» принципам).
Или там же прочтем и учтем лосевскую похвалу Шопенгауэру за то, что «он больше всех других почувствовал как раз алогическую основу мира в отличие от всякой оформленности» 30.
5. Диалектика как точная наука
Мы рассмотрели и дальнее, и ближнее окружение лосевской «философии числа», то окружение, в драматическом притяжении-отталкивании с которым она и оформилась. По ходу рассмотрения уже были, конечно, получены некоторые содержательные характеристики самого ядра, центра всех соотнесений. Теперь пришла пора сосредоточить наше внимание специально на этом центре, в его смысловой точке.
Только сделаем одно предваряющее замечание. Приходится констатировать, что Лосеву не удалось реализовать в полном объеме свой замысел строго диалектического обоснования математики. Причинами тому следует указать как обстоятельства общего плана (вряд ли подобное грандиозное предприятие по силам одному человеку, даже при самых благоприятных внешних условиях), так и частные биографические особенности печального свойства, о которых уже говорилось выше. Добавим еще одно: значительная часть довоенных рукописей периода максимальной активности автора на философско-математическом поприще погибла летом 1941 года в результате прямого попадания фашистской авиабомбы в дом на Воздвиженке, где была квартира Лосева. Чего-то не успел сделать или не дали, толкая под руку, что-то было уничтожено, готовое. Потому теперь приходится заниматься реконструкцией общей панорамы математических знаний, как она представлялась автору «Диалектических основ математики» (особо ценны для нашей задачи параграфы 9, 34, 80 книги), а также отыскивать следы прежних замыслов в более позднем творчестве философа. По ходу этих операций будут видны и общие контуры всей конструкции, и зияющие места утраченных ее деталей.
Проведя начальное тематическое разделение (33) по сферам:
a) философии чистой математики,
b) философии математического естествознания,
c) культурно-социальной истории числа,
Лосев сосредоточил свой анализ на первой сфере, вынужденно «оставляя пока в стороне естествознание, психологию, социологию, теорию самой диалектики числа и историю» (35). Характерно это «пока». Нам не известны лосевские работы, специально посвященные «временно покинутым» темам, однако интерес к социально-культурным типологиям вообще, к «физиогномике» математических воззрений в частности можно проследить в его творчестве на протяжении всей жизни. В тех же «Диалектических основах математики» нетрудно обнаружить примеры напряженного внимания автора к социально-исторической обусловленности тех или иных математических построений. На них особо обращает внимание читателей первый и самый чуткий рецензент книги – В.М. Лосева (14). Или взять один из таких «бродячих» сюжетов в творчестве Лосева, как логику исчисления бесконечно малых. В роли своеобразного пробного камня она многократно привлекалась философом то для характеристики мировоззренческого стиля Возрождения (с его богоборческим лозунгом quo non ascendam) и вообще пресловутого «прогрессизма» новоевропейской культуры, то для анализа телесных интуиций античности, то для понимания ранней истории представлений о дискретности, пределе и континууме. В своем неизменно типологическом отношении к различным проявлениям духа, к различным культурам Лосев предстает несомненным продолжателем усилий О. Шпенглера, для которого «то, что выражается в мире чисел», всегда «есть стиль души», души выражающейся 31. Метаматематика обязана быть еще и морфологией культуры.
Область собственно математики, с точки зрения философа, разделяется также на три сферы (40):
a) общая теория (логика) числа, исследующая перво-принципы числа, число как таковое, сущность числа,
b) философия математических дисциплин, специальная теория числа, теория числа в частности, числа как явления,
c) философия теории вероятностей и математической статистики, исследующая число в казусах, в жизни, в действительности.
Дошедшая до нас часть «Диалектических основ математики» вполне представляет всю общую теорию числа (§ 10 – 78) и дает переход к специальным вопросам (§ 81 и далее). Отдельного исследования «числа в жизни», т.е. специального рассмотрения теоретико-вероятностной проблематики автор не оставил, однако о многом мы имеем возможность судить: в «Диалектических основах математики» каждый шаг лосевской аксиоматики получал завершение и разъяснение именно на материале данного слоя математической реальности.
Здесь также проводится классическое триадное разделение (429 – 435):
a) науки о бытии или сущности числа, об интенсивном числе (арифметика, алгебра, анализ),
b) науки об инобытии или явлении числа, об экстенсивном числе (геометрия),
c) теория множеств как наука о синтезе арифметической и геометрической ипостасей числа, об эйдетическом числе.
Второй и третий разделы, строго говоря, нужно отнести к утратам. Исчез, например, целый том по геометрии, о котором Лосев несколько раз упоминает (227, 302) и куда отсылает за подробностями. Однако примем в расчет, что логико-диалектической проработкой геометрических идей автор занимался уже на страницах книги «Античный космос и современная наука». С тем же упреждением осваивалась и теоретико-множественная проблематика, если иметь в виду раннюю «Музыку как предмет логики». Словом, уже дошедшего – много. Даже одно только напоминание о глубинном единстве наглядно-геометрических и счетно-арифметических подходов, убедительно демонстрируемое лосевской метаматематикой, будет весьма кстати сегодня, когда философы и математики все еще бьются над во многом уже решенными, оказывается, вопросами. Для примера укажем тему оппозиции «арифметического» (Rechnen) и «геометрического» (Zeichnen), о которой всерьез заговорил за рубежом Д. Фанг, а у нас – К.И. Вальков 32. Пора на самом деле «обратиться к беспристрастному и ко всему одинаково равнодушному суду диалектики» (389), а не замирать, по Фангу, в безмолвном ужасе перед сфинксом «единой и неделимой и, в конечном итоге, непостижимой тотальности» математики или же вместо одной крайности – излишней «арифметизации» впадать в другую – в крайность «геометризма» 33.
Науки о бытии или сущности числа можно представить, согласно Лосеву, в виде диалектической триады (442):
a) арифметика и алгебра как учения о неизменной сущности числа, о постоянных величинах и их функциях,
b) дифференциальное, интегральное и вариационное исчисления как учения об инобытийной изменчивости числа, о переменных величинах и их функциях в скалярной форме,
c) векторное и тензорное исчисления как учения о действительности числа, о числе синтетическом, ориентированном, направленном.
Здесь второй и третий разделы, если опираться только на «Диалектические основы математики», также следует считать утраченными. Однако достаточно определенный анализ, касающийся диалектической сущности, например, дифференциала и интеграла также отыскивается в книге «Музыка как предмет логики». Утрату содержательной части второго раздела отчасти восполняет сохранившаяся работа Лосева «Некоторые элементарные размышления о логических основах исчисления бесконечно-малых».
Внутри первой сферы интенсивного числа Лосев выделяет очередную триадическую структуру (430, 446):
a) арифметика как учение о непосредственной сущности числа в ее бытии, о числе в себе,
b) алгебра как учение о непосредственной сущности числа в ее инобытии, о числе функционально выраженном,
c) алгебраический анализ (теории форм, инвариантов и др.) как учение о непосредственной сущности числа в ее становлении.
Как следует из публикуемого «Содержания» первой книги «Диалектических основ математики» (23), степень детализации построений лосевской метаматематики была столь велика, что к темам алгебры переход планировался лишь в самом конце обширного тома. Все дальнейшее кануло в Лету. Да и от собственно арифметической части книги сохранилось далеко не все. Так что, предприняв еще одно посещение мира числовых триад, нам остается назвать и последние структуры, и последние утраты.
Внутри арифметики, согласно общей диалектической схеме Лосева, следует различать (446 – 448):
a) натуральный ряд как бытие сущности числа, как акт ее полагания,
b) типы чисел (отрицательные, рациональные, мнимые и др.) как инобытие чисел натурального ряда,
c) действия с числами как становление сущности числа, типы числовых комплексов в разнообразных направлениях и комбинациях счета.
Сохранившийся текст «Диалектических основ математики» обрывается на материалах заключительной части второго из названных разделов. Впрочем, в предыдущем изложении у автора заключено достаточно общих указаний и конкретных примеров, по которым вполне уверенно достраиваются логико-диалектические аналоги для арифметических операций.
На полученную последовательность – анфиладную последовательность одна в другую врастающих триад – еще нужно наложить объединяющий все шаги и этапы процесс, чтобы картина получилась полной: ведь вся математика, показывает и доказывает Лосев, есть не что иное, как развитое и детализированное понятие числа. Число как первая категория, первая «осмысленная, оформленная положенность, категориально оформленная положенность» (105), как «слепительное», напомним, «Да» составляет саму основу математических объектов. Всё есть число. Остается только оговорить: ту перво-категорию, тот «акт полагания подвижного покоя самотождественного различия», что пронизывает, по Лосеву, любые закоулки математики, необязательно называть именно «числом». Действительно, в угоду пуританской строгости можно окрестить названную фундаментальную логико-диалектическую конструкцию каким-либо специальным образом, к примеру назвать ее по случаю и в честь Лосева «L-выражением» (впрочем, «выражение» – это еще слишком лосевский термин) или «L-кортежем» 34. Далее придется поступить так, как уже приходилось действовать в области математической логики, т.е. в области формальной, нелосевской метаматематики, причем именно в 30-х годах. А именно, там вместо интуитивно ясного, но строго не определенного понятия «вычислимой функции» принялись тщательно изучать свойства так называемых «общерекурсивных функций», определяемых уже алгоритмически точно. Следующим шагом было показано, что у вновь введенного формализма достаточно изобразительной мощи, чтобы заместить собой несколько расплывчатое понятие «вычислимости». Наконец, между классами содержательных и формальных функций была провозглашена эквивалентность (в форме «тезиса Черча»), – именно провозглашена, а не доказана, поскольку последнее невозможно ввиду принципиальной несводимости, принципиально различной природы сравниваемого. Желающим увековечить свое имя в новом «тезисе» можно предложить аналогичную проверку для числа и L-кортежа. Впрочем, изучая «Диалектические основы математики», нетрудно убедиться, что Лосев сам положил много усилий для демонстрации справедливости подобного «тезиса» и повсеместно обнаруживал, как математический материал «с огромной точностью воспроизводит» логико-диалектические прообразы (294).
Оценивая теперь лосевский проект метаматематики и оценивая предложенный философом неблизкий путь от максимально общих принципов «философии числа» до мельчайших фактов самой частной (и самой первой) из математических наук, арифметики, мы можем наконец судить и о замысле – он масштабен, и о степени его воплощения – при многих потерях и необходимых оговорках, всё самое трудное свершено, всё самое главное было сформулировано и предано бумаге. Обозревая труды, в невольном одиночестве исполненные Лосевым, можно с оптимизмом предположить, что «задача философского обоснования математики» если и не разрешена единолично им, то вполне может быть разрешима коллективными усилиями на путях, проложенных лосевской метаматематикой. А саму диалектику как основное орудие этой метаматематики уже теперь «можно считать… настолько зрелой и конкретизированной дисциплиной, что она вполне может (и даже обязана) войти» – и, как мы теперь знаем, успешно-таки вошла – «в детали числовых конструкций, не ограничиваясь общими рассуждениями только о самом понятии числа» (424).
6. Вместо заключения
Итак, определенный период творческой биографии Лосева, пройденный, по его собственной квалификации, под знаком ярко выраженного «отвлеченно-диалектического эроса», вполне закономерно завершился систематическими логико-математическими исследованиями. Как бы ни относиться к некоторым лосевским сочинениям, «гипертрофированным в смысле логики и диалектики» (В.М. Лосева), к этому всеохватному «унифицированному строительству из диалектических блоков» (С.С. Хоружий), ясно и достоверно следующее: мощный творческий эрос позволил Лосеву занять достойное место в ряду немногих подлинных мыслителей, для которых постижение интегрального целого, обретение Логоса в Хаосе было превыше всего. До Лосева в этот ряд входили и входят преимущественно естествоиспытатели – отечественные созидатели систем, прежде всего Д.И. Менделеев, Е.С. Федоров, В.И. Вернадский, Н.И. Вавилов, А.А. Любищев, среди современных исследователей – Г.М. Идлис, Ю.А. Урманцев, Ю.И. Кулаков. Последний из названных, вспоминая предысторию созданной им теории физических структур, высоко оценивал совет своего учителя И.Е. Тамма, выдающегося физика-теоретика: в поисках «единого универсального языка» природы нужно вооружаться примером «прежде всего русских философов», которые «о многом догадывались, хотя не могли сформулировать свою идею всеединства» достаточно строго 35. Пример Лосева показывает, что русская философия оказалась способна не только «о многом догадываться», но и «многое сформулировать».