Река, выходящая из Эдема. Жизнь с точки зрения дарвиниста — страница 27 из 30

Nature совместную статью, посвященную «Письму св. Иуды» как одному из «вирусов мозга»):

Для любви все возможно

Этот листок был прислан тебе на счастье. Оригинал его находится в Новой Англии. Он обошел весь мир 9 раз. Тебе прислали Удачу. Она улыбнется тебе в течение 4 дней в надежде, что ты отправишь ее дальше. Удача придет к тебе по почте. Не посылай денег. Перепиши это письмо и отправь тем, кто, на твой взгляд, нуждается в везении. Не посылай денег, поскольку вера бесценна. Не храни это письмо. Обязательно избавься от него в течение 96 ч. Офицер ПВО Джо Эллиотт получил $ 40 000 000. Дж. Уэлч потерял свою жену через 5 дней после получения письма. Тем не менее перед ее смертью он получил $ 75 000. Он не стал распространять письмо. Пожалуйста, разошли копии и посмотри, что произойдет через 4 дня. Эта цепочка началась в Венесуэле, ее записал Сол Энтони Дегнас, миссионер из Ю. Америки. С тех пор копии должны путешествовать по свету. Ты должен сделать 20 копий и отправить их своим друзьям и коллегам, после того как через несколько дней получишь сюрприз. Это несет только любовь, даже если ты не суеверен. Обрати внимание на следующее. Кантонаре Диас получил это письмо в 1903 году. Он попросил свою секретаршу сделать копии и разослать их. Через несколько дней он выиграл в лотерею 20 миллионов долларов. Конторский служащий Карл Доббит получил это письмо и забыл, что от него нужно избавиться в течение 96 ч. Он потерял работу. Когда письмо снова попалось ему на глаза, он сделал 20 копий и разослал их. Через несколько дней он нашел работу еще лучше прежней. Долан Фейрчайлд получил это письмо и, не поверив ему, выбросил. 9 дней спустя он умер. В 1987 году письмо получила одна молодая женщина из Калифорн. Оно было выцветшим и едва разборчивым. Женщина обещала себе перепечатать письмо и разослать, но отложила на потом. Ее стали одолевать всевозможные проблемы, в том числе затратные проблемы с машиной. Она не избавилась от письма в течение 96 ч. В конце концов она распечатала письмо, как обещала, и получила новую машину. Запомни: деньги не слать. Не пренебрегай письмом: оно действует.

Св. Иуда

У этого смехотворного документа налицо все признаки эволюции путем многочисленных мутаций. Он изобилует огрехами и корявостями, также имеют хождение и другие варианты того же текста. После публикации нашей статьи в Nature мне прислали несколько существенно отличающихся друг от друга версий с разных концов земного шара. Например, в одной из таких альтернативных редакций «офицер ПВО» стал «офицером ВВС». «Письмо св. Иуды» хорошо известно почтовой службе США: по ее данным, оно существовало еще до того, как это ведомство стало официально документировать свою деятельность, и с ним происходят регулярные «всплески численности», подобные эпидемиям.

Обратите внимание на то, что список событий, якобы осчастлививших тех, кто согласился переписать письмо, и неудач, обрушившихся на упрямцев, не мог быть составлен самими этими людьми. Как утверждается в письме, удача улыбнулась счастливчикам только после того, как они избавились от него. Потерпевшие же вообще никакого письма не отправляли. Судя по всему, эти истории были просто выдуманы, о чем вообще-то можно догадаться, исходя из одного лишь их неправдоподобия. И здесь мы приходим к главному отличию «магических писем» от природных репликаторов, инициировавших взрыв жизни на Земле. «Магические письма» изначально придуманы человеком, и все изменения их формулировок зарождаются в людских головах. А в начальной точке взрыва жизни не существовало ни разума, ни выдумки, ни намерений. Была одна только химия. И тем не менее, едва лишь самовоспроизводящимся веществам удалось случайно возникнуть, неизбежно должна была установиться тенденция повышения численности более успешных разновидностей за счет менее успешных.

Как и в случае «магических писем», для химических репликаторов успех — просто синоним частоты встречаемости. Но это всего-навсего определение, почти что тавтология. Чтобы добиться успеха, нужны практические умения, а умениями называют нечто конкретное, от тавтологий весьма далекое. Успешным репликатором станет та молекула, которая, в силу тончайших особенностей своего химического устройства, будет обладать всем необходимым для самоудвоения. На практике это может реализовываться множеством различных способов — даже если устройство самого репликатора кажется на удивление однообразным.

ДНК однообразна до такой степени, что представлена исключительно различными сочетаниями выстроенных в ряд четырех букв: А, Т, Ц и Г. Но при этом, как мы уже видели в предыдущих главах, средства, которыми ДНК обеспечивает свою репликацию, ошеломляют многообразием. В числе таких средств — построение более мощных сердец для гиппопотамов, более прыгучих ног для блох, более аэродинамически обтекаемых крыльев для стрижей, более эффективных плавательных пузырей для рыб. Все органы и конечности животных, все корни, листья и цветки растений, глаз, мозг и разум и даже страх и надежда — все это рычаги, используемые успешными молекулами ДНК для попадания в будущее. Разнообразие рычагов практически неисчерпаемо, а вот рецепты их изготовления до нелепого сходны: все те же А, Т, Ц и Г, только каждый раз заново перетасованные.

Возможно, так дело обстояло не всегда. У нас нет никаких доказательств, что исходный код, возникший в самом начале информационного взрыва, был записан алфавитом ДНК. По правде говоря, вся основывающаяся на ДНК и белке информационная технология столь сложна — «хайтек», по выражению химика Грэма Кернса-Смита, — что едва ли можно представить себе ее случайное возникновение на ровном месте, без какой-то другой самореплицирующейся системы-предшественницы. Такой предшественницей могла быть либо РНК, либо что-то подобное простым самовоспроизводящимся молекулам из эксперимента Джулиуса Ребека, либо же что-то совершенно иное. Вышеупомянутый Кернс-Смит (см. его книгу «Семь подсказок о возникновении жизни») высказал захватывающее предположение, подробно рассмотренное мною в «Слепом часовщике», что самыми первыми репликаторами были неорганические кристаллы глины. Вряд ли мы когда-нибудь доподлинно выясним, как было дело.

Что мы можем, так это приблизительно реконструировать общую хронологию взрыва жизни на любой планете, где угодно во Вселенной. Подробности того, как именно он будет протекать, могут зависеть от локальных условий. Система «ДНК — белок» не стала бы функционировать в среде из холодного сжиженного аммиака, но какая-нибудь другая система наследственности и эмбриологии, возможно, сумела бы. Как бы то ни было, именно подобными частностями мне хотелось бы пренебречь, поскольку я собираюсь сосредоточиться на универсальных принципах, не зависящих от конкретной планеты. Перечислю теперь в более систематической манере те пороги, через какие, по идее, должна проходить любая репликативная бомба. Некоторые из них, по-видимому, действительно всеобщие. Другие же могут оказаться специфическими именно для нашей планеты. Пожалуй, не всегда будет легко отличить универсальное от локального, и этот вопрос сам по себе интересен.

Под номером один идет, разумеется, «репликативный порог» как таковой — появление какой-либо самокопирующейся системы с наличием хотя бы зачаточной формы наследственной изменчивости, то есть с совершающимися иногда в процессе копирования случайными ошибками. Вследствие прохождения порога № 1 планета будет содержать некую смешанную популяцию, чьи разнородные представители конкурируют за ресурсы. Ресурсов будет недостаточно — или окажется недостаточно после того, как конкуренция усилится. В борьбе за эти скудные ресурсы некоторые варианты копий окажутся относительно успешными. А некоторые — относительно неудачливыми. Так в элементарном виде появится естественный отбор.

Поначалу об успехе репликаторов можно будет судить напрямую по их собственным свойствам — например по тому, насколько хорошо их молекулярная структура умещается в «литейной форме». Но затем, после многих поколений эволюции, мы подойдем к порогу № 2 — «фенотипическому порогу». Теперь репликаторы будут выживать не благодаря собственным качествам, а в силу своих воздействий на что-либо другое, называемых фенотипом. На нашей планете фенотипы легко распознаются как те части животных и растительных организмов, что находятся под влиянием генов. А это, стало быть, все части тела, вплоть до мельчайших. Представьте себе, будто фенотипы — рычаги власти, которыми успешные репликаторы проталкивают себя в следующее поколение. В более общем виде фенотипы можно определить как результаты деятельности репликаторов, оказывающие влияние на успех этих репликаторов, но к собственной репликации не способные. К примеру, некий конкретный ген какого-нибудь вида улиток, живущих на тихоокеанском острове, регулирует, вправо или влево закручивается у тех раковина. Сами молекулы ДНК не делятся на лево- и правозакрученные, а вот их фенотипические эффекты — другое дело. Может статься, что левозакрученные и правозакрученные раковины не одинаково хорошо справляются с задачей наружной защиты улиточьего организма. А поскольку гены улиток сами находятся внутри тех раковин, на чью форму оказывают влияние, численность генов, производящих удачные раковины, в конечном итоге превысит численность генов, производящих неудачные раковины. Будучи фенотипами, раковины не порождают дочерних раковин. Каждая раковина сделана благодаря ДНК, порождающей новую ДНК.

ДНК-последовательности оказывают влияние на обусловливаемые ими фенотипы (вроде направления закручивания раковины) посредством более или менее сложной цепочки промежуточных событий, объединяемых под рубрикой «эмбриология». На нашей планете первое звено этой цепочки всегда представляет собой синтез молекулы белка. Каждая деталь строения белковой молекулы в точности определяется знаменитым генетическим кодом — последовательностью из четырех различных букв ДНК. Но эти подробности имеют, скорее всего, только местное значение. Говоря же в общем, пла