Именно поэтому, заканчивая очередную беседу с ученым, мы нередко просили его сформулировать те ближайшие задачи, которые стоят перед его наукой и к решению которых можно было бы привлечь всех наших читателей. Конечно, говорили мы при этом, мы понимаем, что прошло время, когда великие открытия можно было делать, принимая ванну или глядя на падающее с ветки яблоко…
Наука ушла далеко вперед, все, лежавшее, так сказать, на поверхности, давно открыто. Для научной работы нужны хорошо оборудованные лаборатории, телескопы с зеркалами и линзами пятиметрового диаметра, синхрофазотроны с магнитами весом в десятки тысяч тонн. Но, может быть, есть еще какие-то уголки, где можно увидеть неоткрытое невооруженным глазом. Может быть, если туда будут устремлены многочисленные глаза людей, которые заинтересуются вашей областью науки, кому-нибудь самому зоркому и удастся увидеть это новое…
Член-корреспондент Академии наук СССР Иван Августович Одинг, когда мы сказали ему все это, на минуту задумался и возразил:
— Напрасно вы думаете, что делать серьезные открытия в наше время можно только в научно-исследовательских институтах, снабженных сверхуникальной аппаратурой. Это, конечно, не так. Я расскажу два случая из моей жизни, когда не тончайшие приборы, а именно свежесть молодого непредубежденного взгляда помогала увидеть новое.
Первый случай произошел еще в те годы, когда я был молодым инженером и работал на ленинградском заводе «Электросила». Тяжелое для нашего народа было время. Мы строили свою индустрию, а капиталистические фирмы отказывались продавать нам самое необходимое. Особенно дефицитным было положение с оловом. А этот металл является необходимой составной частью баббита — антифрикционного металла, из которого делают трущиеся поверхности подшипников. После долгих усилий нам удалось создать сплав, не уступающий по своим свойствам обычному баббиту, но содержащий вместо 83 всего около 20, процентов олова.
Обрадованные, мы пустили подшипники из этого сплава на конвейер. И — о ужас! — 95 процентов изделий пошло в брак. При расточке металл оказывался ноздреватым, как швейцарский сыр!
В девяносто пяти случаях из ста!
Но в пяти случаях металл все-таки получался отличным. Надо было выяснить, чем отличалась технология изготовления этих пяти подшипников от девяноста пяти остальных.
На практике у меня в то время было несколько студентов. Я поставил перед ними этот вопрос. И дня через три один из них вошел в мой кабинет.
— Разгадка найдена, — сказал он.
Все три дня и мы, инженеры лаборатории, тоже бились над этим вопросом. Но ничего не придумали. Я был готов считать заявление безусого мальчика непростительной дерзостью.
— Вы убеждены в этом? — спросил я.
— Да, — ответил он, — доброкачественный металл получается в том случае, когда в момент заливки в кузнице работает большой молот…
Действительно, это была разгадка, первое в жизни научное открытие молодого ученого, с которым мы потом долго работали вместе. Он погиб во время войны в осажденном Ленинграде…
На другой день мы приделали к столу, на котором производилась заливка баббита, специальный вибратор, полностью заменивший работу кузнечного молота. И брак прекратился…
Второй случай… Знаете ли вы, что сталь во время закалки имеет свойство коробиться? Это крайне неприятное явление, которое видели и которое наделало немало неприятностей не сотням, не тысячам, а десяткам тысяч инженеров. А калильщики, закаливая длинные и узкие напильники, поступают так. Берут раскаленный напильник, опускают его на несколько мгновений в расплавленный свинец или масло — это зависит от качества стали — и сразу вынимают. Словно прицеливаясь вдоль грани, они смотрят, куда напильник «повело», а затем правят его легкими ударами молотка или специальным приспособлением.
Почему-то никто из тысяч видевших это инженеров в течение десятков лет не задал себе простой вопрос: а как это удается калильщику выправить закаленную сталь? По пробуйте-ка изогнуть хоть чуть-чуть купленный в магазине напильник!
Когда ученые разобрались, оказалось, что в первые минуты после того, как вы опустили раскаленную сталь в жидкость для закалки, перекристаллизация в ней еще не прошла. Она остается еще такой же, как и до начала охлаждения. Из нее можно узлы завязывать. Только нельзя упустить эти короткие мгновения, потому что уже через несколько минут произойдет перекристаллизация, и если вы начнете металл гнуть, он расколется, рассыплется на куски.
А сейчас из этого наблюдения возникла изотермическая закалка, которая уже стала обычной вещью, применяемой повсеместно.
Все это я рассказал для того, чтобы показать: научное творчество — это не удел немногих избранных жрецов, замкнувшихся в священных храмах, именуемых^ лабораториями и институтами. Очень и очень многие задачи, стоящие перед наукой, могут быть решены в цехе завода, в мастерской, на колхозном поле…
Еще более определенно ответил на наш вопрос о возможности активной помощи ученым со стороны самых широких кругов людей лауреат Ленинской премии академик Александр Львович Минц. Один из самых выдающихся наших ученых в области токов высокой частоты, в области радио, он считает радиолюбителей активнейшим и могучим отрядом в борьбе за технический прогресс своей науки.
— Радиолюбители всегда были верными помощниками ученых, — сказал Александр Львович. — Они приходят на помощь науке и технике в двух случаях. Во-первых, тогда, когда требуется организация массовых радионаблюдений, когда только накопление большого количества фактов может позволить правильно решить ту или иную задачу. Ведь радиолюбителей сотни тысяч; складывая по зернышку свой драгоценный опыт, только они и могут насыпать основание, на котором утвердится фундамент точного знания в области радиотехники.
Во-вторых, вторжение в науку радиолюбителей полезно, когда надо поставить смелый опыт, выходящий за рамки установившихся общепринятых методоз. Специалист-ученый волей-неволей благодаря сдерживающему влиянию его знаний и опыта ограничен в выборе пути исследования. Его больше, чем неспециалиста, связывают цепи установившихся понятий. Радиолюбитель может сделать девяносто девять самых смелых (а иногда и самых нелепых) опытов, в него за это никто камень не бросит. Если сотый опыт окажется удачным, это уже отлично.
Мне не раз приходилось поражаться на выставках изумительной смелости радиолюбительских конструкций. Сколько в них таланта, сообразительности, тончайшего мастерства! Радиолюбитель не связан вопросами технологии, экономичности в серийном изготовлении — ничем не связан, кроме своей фантазии и законов природы. А инженер… Он думает и о доступности того или иного материала, и о квалификации рабочих, которым надлежит осуществить его конструкцию.
Вот несколько примеров из истории радиотехники, показывающих, как полезно бывает вмешательство радиолюбителей.
В 1923–1924 годах общепринятым было мнение, что устойчивая дальняя радиосвязь возможна только на длинных волнах. Эти волны распространяются вдоль земной поверхности. Единственным средством увеличения дальности действия радиостанций считали увеличение мощности длинноволновых передатчиков и повышение мачт, поддерживающих их антенны.
А радиолюбители опрокинули эти общепринятые тогда взгляды и при помощи радиостанций ничтожной мощности, работая на коротких радиоволнах, установили фантастические рекорды дальности радиосвязи. Москвичи разговаривали с австралийцами, парижане с канадцами, аргентинцы с японцами. И теоретикам пришлось пересмотреть свои позиции. Было открыто отражение коротких волн от ионосферы. Эти волны стали основой дальней радиосвязи. Они нашли широчайшее применение.
А сегодня… Ученые еще не спроектировали, инженеры не пустили в серийное производство «всемирных телевизоров»; общепринятым считается, что телевидение возможно «в пределах прямой видимости». А радиолюбители, смастерив какие-то немудреные приставки к своим телевизорам, устойчиво принимают под Харьковом телепередачи из Парижа и Лондона, близ Риги — передачи из Москвы и Варшавы. Снова приходится ученым осмысливать опыт радиолюбителей, подводить под него теоретическую базу. При благоприятных условиях, говорят уже они, и телевидение может стать всемирным, как сегодня — радиовещание.
Поэтому так важно и нужно приобщение огромных масс радиолюбителей — всенародного актива молодых ученых, работающих з области высокочастотных электромагнитных колебаний, — к самым последним проблемам, стоящим перед нашей наукой. Мне хочется рассказать о нескольких таких проблемах.
Мы живем в годы первых искусственных спутников Земли и первых космических кораблей. Это удивительное дело — создание небесных тел и запуск их в космическое пространство! Еще не все осознали великолепие этого подвига науки, техники и промышленности.
Большой вес советских искусственных спутников и кораблей — это огромное достижение наших специалистов по ракетной технике. Они сумели обеспечить создание могучих двигателей, способных забросить большой груз далеко за пределы ионосферы и сообщить ему огромную скорость на орбите. Но этому гигантскому достижению должны соответствовать малые веса измерительной и радиотехнической аппаратуры. Если достижения специалистов по реактивной технике определяются созданием больших и мощных ракет, то успех радиотехников должен оцениваться по умению создать крохотные, но чрезвычайно точные и обладающие огромной чувствительностью специальные электронные приборы.
Миниатюризация и даже сверхминиатюризация — я позволю себе так выразиться — одна из важнейших задач, стоящих перед радиотехникой эпохи искусственных спутников Земли.
Уменьшение габаритов и веса должно касаться всех деталей радиоаппаратуры — источников питания, приемника, передатчика, радирующих устройств и т. д. Некоторые пути 8 этом направлении намечены современной техникой. Это применение полупроводниковых электронных приборов вместо радиоламп, использование печатных схем и т. д. Но, во-первых, эти пути еще не пройдены до конца, во-вторых, могут быть найдены бесчисленные другие новые пути. Эти задачи могут и должны увлечь наших радиолюбителей.