Ритм Вселенной. Как из хаоса возникает порядок — страница 33 из 77

Эти тесные сближения оказывают сильное возмущающее воздействие на астероид, что обусловлено громадными размерами Юпитера и его огромной силой притяжения – особенно в момент их максимального сближения. Кроме того, одни и те же возмущающие воздействия все время аккумулируются, поскольку такие взаимодействия между астероидом и Юпитером всегда происходят в одной и той же точке орбиты. После того как совершится несколько сотен таких циклов, эти периодические напряжения накапливаются до такой степени, что искажают траекторию астероида, делая ее хаотической, что существенно повышает вероятность выхода астероида за пределы пояса. (Если бы астероид не находился в резонансе 3:1, он сближался бы с Юпитером в произвольных точках своей орбиты, в результате чего на достаточно продолжительном отрезке времени все перечисленные эффекты взаимно компенсировались бы.)

Компьютерное моделирование показывает, что астероиды, отрывающиеся от пояса, чаще всего падают на Солнце или покидают пределы Солнечной системы. Иногда, однако, они сталкиваются с одной из ближних планет. Если такой ближней планетой оказывается Земля и если размеры астероида оказываются сопоставимы с размерами горы Эверест (а именно такими, по-видимому, были размеры астероида, уничтожившего динозавров на нашей планете, если принять во внимание величину кратера, обнаруженного южнее полуострова Юкатан и образовавшегося в результате падения этого астероида), то нетрудно понять, насколько важен для нас этот астрономический синхронизм.

Однако эта аргументация не может служить исчерпывающим ответом на первую загадку. Промежутки Керквуда чересчур узкие, чтобы их существование могло объяснить всю массу, которая покидает пояс. Это делает крайне маловероятным предположение о том, что ее источником может быть лишь Юпитер. Астрономы Джон Чемберс и Джордж Уэзерилл недавно предложили альтернативное решение. Они предположили, что на заре развития Солнечной системы несколько «планетарных эмбрионов» – некоторые из них величиной с Марс – сформировались из глыб, обитающих в поясе астероидов (точно так же, как это происходило в других местах при формировании планет, которые мы видим сегодня). Эти протопланеты воздействовали на другие глыбы, обитающие в поясе астероидов, подталкивая их в резонансные «аварийные люки», что приводило к более быстрому утоньшению пояса астероидов, чем в случае воздействия лишь со стороны Юпитера. Со временем некоторые из этих эмбриональных планет (или все они) сами попадали в промежутки Керквуда – лишь для того, чтобы впоследствии быть выброшенными из пояса и исчезнуть навсегда.

В развитие этой логики астрономы Алессандро Морбиделли и Джонатан Лунини предположили, что один из этих неуправляемых «планетарных эмбрионов» мог врезаться в молодую Землю, что привело к появлению на ней океанов. Вообще говоря, появление воды на Земле всегда было загадкой для ученых[124]. На других ближних планетах вода отсутствует (или почти отсутствует). Учитывая положение Земли в Солнечной системе, мы располагаем гораздо большими запасами воды, чем должны были бы.

Традиционное объяснение заключается в том, что кометы, которые содержат большую долю воды, чем все другие небесные тела, бомбардировали Землю на более поздних стадиях ее формирования, поставляя на Землю воду, которая присутствует сейчас в океанах, озерах и реках. Но астрономы начали подвергать сомнению такую гипотезу, поскольку химический состав воды в кометах обычно полностью отличается от химического состава воды на Земле. (Кометы содержат более высокий процент тяжелой воды – чрезвычайно редкого варианта, в котором водород с единственным протоном в своем ядре замещен дейтерием с одним протоном и одним нейтроном.) С другой стороны, вода, обнаруженная в высокоуглеродистых метеоритах, которые, как полагают, являются фрагментами астероидов, по своему химическому составу оказывается гораздо ближе к воде в океанах.

Таким образом, новая гипотеза заключается в том, что избыточное количество воды на нашей планете могло оказаться делом случая, удачным результатом случайного столкновения с ледяной глыбой, запущенной из астероидного пояса. Если правильность этой гипотезы подтвердится, нам останется лишь поблагодарить астрономический синхронизм не только за уничтожение динозавров и расчистку места для эволюции наших предков, но и за доставку воды, без которой жизнь на нашей планете была бы невозможна.


Сколь бы величественное зрелище ни представлял собой синхронизм в космических масштабах, еще более впечатляет он в микромире. Здесь, глубоко в недрах материи, роль осцилляторов исполняют электроны, светлячки микромира. Но в отличие от настоящих светлячков, которых мы, для большего математического удобства, решили считать идентичными, эти квантовые частицы идентичны по-настоящему. Каждый электрон во Вселенной неотличим от любого другого электрона. Они никогда не стареют. Они никогда не ломаются и не разрушаются. А совершенство электронов обеспечивает возможность их беспрецедентного группового поведения, которому нет аналогов в макромире.

В своей повседневной жизни мы привыкли к электричеству лишь в его хаотической форме – суета независимых частиц, не сотрудничающих между собой. Электрический ток, который питает тостер, представляет собой беспорядочную толкотню электронов, продирающихся через нагревательный элемент и раскаляющих его. Но если взять те же самые электроны и упорядочить, скоординировать их движение, вы получите одно из самых восхитительных явлений, известных науке, – триллионы электронов, которые маршируют в ногу, не встречая на своем пути никакого электрического сопротивления и проскальзывая сквозь металл без каких-либо затрат энергии в форме трения или нагрева. Эта невероятно неустойчивая форма электрической проводимости называется в наши дни сверхпроводимостью. Подобно открытию «взаимной симпатии» маятниковых часов, явление сверхпроводимости было открыто благодаря интуитивной прозорливости – в данном случае благодаря тому, что ученым стало интересно, что происходит с электричеством при температурах, близких к абсолютному нулю.

Глава 5. Квантовый хор

Когда мне было шесть лет, мои родители подарили мне в качестве игрушки большую батарею – такую, которые обычно используют в мощных электрических фонарях. Мне почему-то пришло в голову соединить проволокой два полюса этой батареи. Пока я шел к дому моего приятеля Кейси, чтобы продемонстрировать ему свою новую игрушку, я чувствовал, что проволока и батарея нагреваются у меня в руках все больше и больше. Электричество бешено циркулировало по созданной мною цепи, а сопротивление этой цепи электрическому току вырабатывало значительное количество тепла[125].

На микроскопическом уровне триллионы электронов продвигались по проволоке, соскакивая в произвольных направлениях с пространственной решетки атомов меди подобно тому, как во время игры в пинбол шарики соскакивают с амортизаторов в пинбол-машине. Вообще говоря, движение электронов оказывается еще более хаотическим, чем движение шариков во время игры в пинбол. Атомы меди, в отличие от амортизаторов, не стационарны. Они все время трясутся и покачиваются. Чем выше окружающая температура, тем больше они трясутся и покачиваются. Поэтому более точной аналогией была бы совокупность шариков, пытающихся проложить себе путь через препятствие в виде множества вибрирующих амортизаторов. Каждое столкновение с вибрирующей атомной пространственной решеткой препятствует движению электронов и порождает сопротивление.

Эта модель электрической проводимости была знакома всем физикам еще в начале XX столетия. Согласно этой модели, сопротивление металла должно неуклонно снижаться по мере снижения температуры (поскольку меньшая подвижность пространственной решетки означает уменьшение количества и силы соударений). Когда эксперименты подтвердили такой теоретический вывод, некоторые физики заинтересовались: что могло бы произойти с электрической проводимостью в случае снижения температуры металла до абсолютного нуля, то есть до температуры, при которой движение атомов прекращается? Одна группа ученых полагала, что сопротивление должно снижаться вместе с температурой и полностью исчезнуть при абсолютном нуле. Другие ученые утверждали, что сопротивление будет снижаться до определенного предела, но никогда не исчезнет полностью по причине наличия в реальной пространственной решетке всевозможных дефектов и примесей.

Долгое время ученым не удавалось получить окончательный ответ на этот вопрос, поскольку не удавалось достичь абсолютного нуля. Научный прорыв удалось совершить после того, как голландский физик Хейке Камерлинг-Оннес придумал способ сжижения гелия, что позволило ему охлаждать объекты до 269 °C, то есть всего на 4 градуса выше абсолютного нуля. Теперь ничто не мешало Камерлинг-Оннесу получить ответ на вопрос о «нулевом сопротивлении», не дававший покоя ученым. В 1911 г. он обнаружил, что ожидания как той, так и другой групп ученых оказались несостоятельными. Когда он снизил температуру, погрузив в жидкий гелий тонкую трубку, наполненную ртутью, сопротивление ртути вначале постепенно снижалось, что, впрочем, ни для кого не стало неожиданностью. Однако затем, при температуре примерно на 4,2 градуса выше абсолютного нуля, сопротивление ртути резко «обнулилось». Оно не снизилось постепенно до нуля – оно отвесно рухнуло до нуля. При какой-то температуре ртуть демонстрировала ощутимое сопротивление, но после того как температура понизилась буквально на какую-то долю градуса, сопротивление исчезло.

Так Камерлинг-Оннес открыл явление сверхпроводимости[126].

С точки зрения классической физики, сверхпроводимость вообще невозможна. Материал, который проводит электричество без какого-либо сопротивления, кажется столь же безумной концепцией, как пресловутый вечный двигатель, то есть двигатель, работающий бесконечно долго, не испытывая силы трения и не требуя для себя энергии. Однако результат, полученный Камерлинг-Оннесом, вовсе не нарушал законы термодинамики; хитрость в том, что его система функционировала не как двигатель – в том смысле, что она не выполняла никакой работы по отношению к своему окружению. Тем не менее, если не принимать во внимание эту принципиально важную оговорку, сверхпроводники действительно способны обеспечивать своего рода «вечное движение». Последующие эксперименты продемонстрировали, что импульс электрического тока может годами циркулировать по контуру сверхпроводящего проводника без каких-либо потерь энергии. Насколько нам известно – и каким бы неправдоподобным это ни казалось, – сопротивление в состоянии сверхпроводимости не просто близко к нулю: оно