Когда я познакомился с Визенфельдом в 1990 г. на одной из конференций в Техасе, между нами сразу же установилось полное взаимопонимание. Мы были людьми примерно одинакового возраста, в наших биографиях было много общего, у нас были примерно одинаковые научные интересы. К тому же оказалось, что вместе мы много смеемся. После того как он рассказал мне о своем видении проблемы массивов Джозефсона, я полагал, что нам было бы интересно работать над этой проблемой вместе. Курт, который, возможно, чувствовал свою личную ответственность за то, что увлек меня этой работой, напомнил мне о ее возможных технологических применениях (это нужно было знать на тот случай, если кто-нибудь спросит у меня, почему я выбрал именно это направление исследований, а не какое-то другое). Но, честно говоря, технологические применения не были реальной причиной того, почему эти переходы так интересовали меня и Курта. Главной причиной было чистое любопытство, а также предвкушаемое нами удовольствие от создания математического описания восхитительной системы связанных осцилляторов.
Особенно заманчивыми казались нам сами уравнения. Каждый переход был связан со всеми остальными переходами, причем все эти связи были идентичны. Несмотря на то что физически они были соединены между собой последовательно, подобно звеньям длинной цепи, уравнения сделали их похожими на систему, все элементы которой соединены между собой по принципу «каждый с каждым». Это удивило и восхитило меня. Я был уже знаком с этим странным сверхсимметричным видом соединения по моей предыдущей работе над моделью клеток сердца, предложенной Пескином, а также моделями биологических осцилляторов Уинфри и Курамото. Тогда соединение по принципу «каждый с каждым» было выбрано нами исключительно из соображений целесообразности. Никто не знал, как в действительности должны выглядеть уравнения, поэтому нам представлялось вполне естественным начать с простейшего случая. Разумеется, это была, так сказать, карикатура: реальные клетки сердца и светлячки взаимодействуют сильнее со своими соседями, чем с теми, кто находится вдалеке.
Поэтому когда точно такое же соединение по принципу «каждый с каждым» появилось в уравнениях, описывающих массив Джозефсона, я понимающе ухмыльнулся. Вот она, стандартная аппроксимация. «Нет-нет, – сказал мне Курт, – именно так все обстоит в действительности: в данном случае соединение по принципу “каждый с каждым” является не аппроксимацией, а реальностью». Такой принцип соединения проистекает непосредственно из уравнений цепи[166] и является следствием того факта, что в случае, когда переходы соединены между собой последовательно, через каждый из них протекает одинаковый ток, подобно ведрам воды, которые передают по цепочке люди на пожаре. Он обещал отправить мне по завершении конференции подробное письмо с описанием процессов, происходящих в такой цепи.
Еще до того как я вскрыл конверт, по почерку, каким был написан мой адрес на конверте, я понял, что работа с Куртом доставит мне подлинное удовольствие. Курт отличался безупречным каллиграфическим почерком: каждая буковка выглядела аккуратно и даже элегантно, точно по своим очертаниям и в то же время прихотливо. Принимая в течение многих лет экзамены у аспирантов, я научился делать определенные выводы о характере человека на основе особенностей его почерка и, должен сказать, что мой метод анализа почерка, пусть и непрофессиональный, ни разу не подвел меня: в тех случаях, когда аспирант выводил маленькие аккуратные буковки, что-то наподобие печатного шрифта, я почти не сомневался в высоком уровне его знаний. Это правило, между прочим, ничего не говорит о корявом почерке. Знания аспиранта, который царапает свои ответы как курица лапой, могут быть либо весьма посредственными, либо блестящими, либо какими угодно в этом диапазоне. Но каллиграфический почерк… Нет, такой почерк – всегда хороший признак.
Курт предложил начать с самого простого, идеализированного варианта: двух идентичных переходов Джозефсона, соединенных последовательно и управляемых постоянным током. Допустим, нагрузкой является резистор – опять-таки, самый простой вариант, – а вместо обычных трех каналов, по которым проходит ток в каждом из переходов Джозефсона, действуют лишь два канала: один для сверхтока, а другой для обычного тока. (В случае определенных видов переходов третьим каналом – по которому проходит ток смещения – можно пренебречь, что будет вполне допустимой аппроксимацией.)
Преимущество этих упрощений заключалось в том, что это позволяло нам визуализировать динамику системы, создавая обычные двумерные представления. В любой данный момент каждый переход характеризовался вполне определенной фазой – точно так же, как маятник, сфотографированный в какой-то момент времени, находится под определенным углом к вертикали. Представляя в графическом виде одну фазу по горизонтальной оси, а другую – по вертикальной, мы можем изобразить все возможные сочетания в виде соответствующих точек в неком квадрате, стороны которого соответствуют 360 градусам возможных фаз. Этот квадрат называется «пространством состояний» системы. Он обладает замечательным геометрическим свойством, навевающем воспоминания о старых видеоиграх, в которых космический корабль, уходящий за правый край экрана, чудесным образом появляется из-за левой границы, а космический корабль, ударяющийся о нижний край экрана, возникает наверху. Пространство состояний для этого массива Джозефсона должно было обладать таким же свойством, поскольку фаза, составляющая 360 градусов, физически неотличима от фазы, равной 0 градусов (точно так же как маятник, свисающий вертикально вниз, будет все так же свисать вертикально вниз, если повернуть его вокруг оси на 360 градусов). Поскольку левый и правый края квадрата соответствуют одному и тому же физическому состоянию, математики представляют их как полностью слившиеся в одну линию, как если бы вы свернули лист бумаги в цилиндр, соединив между собой его края. Кроме того, верхний и нижний края квадрата также соответствуют одному и тому же физическому состоянию, поэтому их также следует соединить между собой, а это означает, что верхний и нижний края нашего цилиндра также нужно соединить между собой, в результате чего получится что-то похожее на жареный пончик, поверхность которого представляет собой форму, называемую тором.
Таким образом, мы приходим к выводу, что пространство состояний для этого простейшего из массивов Джозефсона эквивалентно поверхности тора. Каждая точка на поверхности такого тора соответствует определенному электрическому состоянию массива, и наоборот. По мере того как с течением времени массив переходит из одного состояния в другое, точка, соответствующая электрическому состоянию массива, плавно перемещается по поверхности тора, подобно тому как увлекается плавным течением ручейка пылинка, случайно оказавшаяся на его поверхности. Картина течения этого воображаемого ручейка – со всеми его изгибами и завихрениями, его заводями и участками с ускоряющимся течением – учитывается в уравнениях цепи для нашего массива. Исходя из текущих значений фаз, эти уравнения определяют, как изменятся фазы в следующий момент времени.
Эти уравнения относятся к классу нелинейных уравнений, поэтому мы, конечно, не могли надеяться на то, что нам удастся найти для них однозначное и исчерпывающее решение, но мы полагали, что сможем выяснить качественные характеристики этого потока в целом. Например, точки стагнации (места на поверхности тора, где наша воображаемая пылинка застревает) должны соответствовать состояниям электрического равновесия для массива, когда все токи и напряжения не изменяются во времени. Устойчивость таких состояний можно оценить, вообразив, как наша пылинка могла бы покинуть такое состояние: если она всегда возвращается в него, как если бы ее засасывало в водосток, то такое состояние равновесия является устойчивым. Можно также предположить, что картина потока содержит замкнутый контур, маленький водоворот, в котором наша пылинка может кружиться до бесконечности, каждый раз по истечении определенного времени возвращаясь в свою исходную позицию. Такой контур должен означать некую форму периодического, повторяющегося поведения – электрическую осцилляцию в массиве. Мы с Куртом были уверены, что такие контуры обязательно должны иметь место, но нам не было ничего известно об их устойчивости – о том, всасывают ли они в себя соседние состояния.
Простейшим контуром является синхронная осцилляция, при которой фазы обоих переходов все время остаются равными. Соответствующая траектория пролегает вдоль главной диагонали квадрата. Она начинается в нижнем левом углу, затем движется на северо-восток, пока не достигнет верхнего правого угла, после чего она мгновенно возвращается в нижний левый угол (поскольку 360 градусов и 0 градусов соответствуют одной и той же фазе). Если рассматривать такую траекторию на квадрате, то получается, что она все время перепрыгивает из одного угла в другой, но если ее рассматривать на поверхности тора – которая представляет собой истинное пространство состояний для нашей системы, – то никаких перепрыгиваний не наблюдается. Переход оказывается плавным и незаметным.
Когда мы проанализировали картину этого потока в целом, мы были потрясены, обнаружив, что каждая другая траектория повторяет себя подобным образом. Каждое решение является периодическим. Если же вглядеться в эту картину пристальнее, то ничего особенно удивительного в обнаруженном нами факте нет. Качающийся маятник все время повторяет свое поведение, по крайней мере в простейшем, идеализированном случае, когда в его подшипниках отсутствует сила трения и когда отсутствует сопротивление воздуха. В этом случае не имеет значения, инициируете ли вы процесс колебаний маятника с большой или с малой дуги – в любом случае колебания будут оставаться неизменными и повторяться до бесконечности. То же самое относится ко всем другим видам «консервативных» механических систем, гипотетических идеализированных случаев, где отсутствуют какие бы то ни было формы трения и рассеяния механической энергии, а вся эта энергия полностью сохраняется («консервируется»), не превращаясь в тепло. Однако именно по этой причине периодическое поведение массива Джозефсона оказалось для нас столь неожиданным. Этот массив был нагружен трением. С электрической точки зрения, трение – это сопротивление. Сами переходы Джозефсона заключают в себе сопротивление (соответствующее пути, по которому проходит обычный ток), а нагрузкой цепи служил обычный резистор. Тем не менее этот массив воплощал в себе консервативную систему.