Пытаясь уяснить такое поведение, мы с Куртом и его другом Пьером Коле воспользовались методом усреднения, предложенным Джимом, чтобы привести наши уравнения к более приемлемой для анализа форме.
Именно здесь нам на помощь пришла модель Курамото[170], ключ к синхронизму. До того времени модель Курамото считалась не чем иным, как удобной абстракцией, простейшим способом понимания того, как – и при каких условиях – группы несхожих между собой осцилляторов могут самопроизвольно синхронизироваться. Модель Курамото была исключительно плодом воображения, придуманным для использования в качестве весьма приблизительной модели биологических осцилляторов: сверчков, светлячков, клеток-ритмоводителей сердечного ритма. Теперь нам предстояло использовать ее для анализа динамики сверхпроводящих переходов Джозефсона. Это напомнило мне об удивительном чувстве, о котором в свое время говорил Эйнштейн: о чувстве, которое испытывает ученый, обнаружив скрытое единство явлений, которые прежде казались никак не связанными между собой.
Вскоре после того как мы опубликовали эти результаты, я получил из Киото (Япония) письмо, написанное красивым почерком. «Я испытал удивление и подлинное восхищение, – писал мне Йосики Курамото. – Я даже не мечтал о том, чтобы моя простая модель могла пригодиться для анализа реальных физических систем».
Модель Курамото была тем решением, которое терпеливо ожидало появления задачи, подходящей для себя. Она никогда не задумывалась своим создателем как буквальное описание чего бы то ни было. Она лишь представляла собой идеализированную модель, предназначенную для исследования рождения спонтанного порядка в его простейшей форме. Тем не менее обнаруженная связь ее с массивами Джозефсона тотчас же объяснила, почему эти приборы должны синхронизироваться резко, мгновенно. Этот фазовый переход был, по сути, тем же фазовым переходом, который открыл Уинфри в своей модели биологических осцилляторов и который впоследствии был столь элегантно формализован Курамото в его модели, поддающейся решению. Специалисты по переходам Джозефсона наблюдали этот переход еще раньше, в ходе компьютерного моделирования, выполнявшегося ими, однако не располагая теоретической основой для его понимания, они просто не обращали внимания на него (это еще раз напоминает нам известную истину: никогда не следует доверять какому-либо факту до тех пор, пока этот факт не будет подтвержден теорией).
После 1996 г. модель Курамото применялась для исследования других физических объектов, начиная с массивов связанных лазеров[171] и заканчивая гипотетическими осцилляциями легчайших субатомных частиц, называемых нейтрино[172]. Возможно, мы улавливаем первые признаки глубокого единства в природе синхронизма. Найдутся ли какие-либо практические применения этого единства, покажет будущее. Учитывая то, сколь многие болезни человека связаны с синхронизмом и его нарушениями (эпилепсия, сердечная аритмия, хроническая бессонница) и сколь многие устройства основаны на использовании синхронизма (массивы Джозефсона и массивы связанных лазеров, электроэнергетические системы, глобальная система навигации и определения местоположения), мы можем с уверенностью утверждать, что углубленное понимание спонтанного синхронизма обязательно приведет нас к появлению его практических применений.
Широкое использование модели Курамото поднимает вопрос о причинах вездесущести этой конкретной математической структуры. По правде говоря, она, наверное, вовсе не вездесуща. Я уделил ей так много внимания лишь потому, что она является, пожалуй, единственным случаем спонтанного синхронизма, который мы понимаем достаточно хорошо. Руководствуясь теоретическими положениями, можно показать, что модель Курамото применима лишь при выполнении четырех особых условий; в противном случае эта модель неприменима. Во-первых, рассматриваемая система должна состоять из огромного количества компонентов, каждый из которых является самоподдерживающимся осциллятором.
Это само по себе является сильным ограничением. Отдельным элементам должна быть присуща чрезвычайно простая динамика: чистая ритмичность на протяжении стандартного цикла, без хаоса, турбулентности и каких-либо осложнений – просто повторяющееся движение. Во-вторых, осцилляторы должны быть слабо связанными – в том смысле, что состояние каждого из них можно охарактеризовать только его фазой. Если же связь между осцилляторами настолько сильна, что способна существенно исказить амплитуду осциллятора, то модель Курамото неприменима. Третье условие накладывает наиболее сильные ограничения: каждый из осцилляторов должен быть связан в одинаковой степени со всеми остальными. На практике лишь очень немногие системы удовлетворяют этому условию. Вообще говоря, осциллятор взаимодействует сильнее со своими соседями в пространстве (или с совокупностью виртуальных соседей, определяемой некоторой сетью взаимного влияния). Наконец, осцилляторы должны быть практически идентичны, а величина дисперсии в их свойствах должна быть соизмерима со слабостью связи между ними.
С учетом всех этих условий динамика модели Курамото и родственных ей моделей должна становиться для вас самоочевидной. Тем не менее внезапное возникновение синхронизма по-прежнему оказывается для нас неожиданностью. Даже после того как синхронизм появляется, наше понимание его (и особенно понимание того, почему он возникает практически одномоментно и самопроизвольно) оказывается совершенно недостаточным. Последней иллюстрацией этого факта является фиаско лондонского моста Millenium Bridge.
Millenium Bridge должен был стать гордостью Лондона[173]. Этот элегантный авангардистский пешеходный мост, строительство которого обошлось лондонской казне более чем в 27 миллионов долларов, был первым за столетие новым мостом через Темзу в Лондоне. Он связывал лондонский район Сити и собор Св. Павла, расположенный на северном берегу Темзы, с музеем современного искусства Tate Modern, расположенным на южном берегу. Этот мост отличался радикальностью своей конструкции: самый плоский в мире висячий мост, волнистая лента длиной 320 метров с низкорасположенными консольными балками и тонкими стальными тросами, протянутыми через реку. Концепция такого моста стала плодом необычного сотрудничества между строительной компанией Ove Arup, архитектором лордом Норманом Фостером и скульптором сэром Энтони Каро. «Луч света, – так окрестил этот мост лорд Фостер, находясь под впечатлением его ночного вида, когда сооружение подсветилось многочисленными электрическими фонарями. – Нечто подобное, то есть конструкцию, создающую иллюзию свободного парения в воздухе, мы и намеревались создать»[174]. Хотя за строительство моста и его надежность отвечали инженеры компании Ove Arup, лорд Фостер и сэр Энтони были, по-видимому, также непрочь искупаться в лучах славы. Как бы то ни было, во время телетрансляции торжественного открытия моста, в котором участвовала королева, их лица сияли от удовольствия.
Открытие моста для публики состоялось в субботу, 10 июня 2000 г. Как только полиция разрешила, сотни возбужденных лондонцев ринулись на мост с обоих его концов. Однако буквально через несколько минут мост начал угрожающе раскачиваться из стороны в сторону; 690 тонн стали и алюминия выписывали в воздухе S-образные кривые, подобно извивающейся змее. Испуганные пешеходы судорожно цеплялись за перила, пытаясь удержаться на ногах, однако мост раскачивался все сильнее и сильнее. В конце концов амплитуда достигла 20 сантиметров.
Роджер Ридсдилл-Смит, один из молодых инженеров компании Ove Arup, который предложил эту новаторскую конструкцию, растерянно наблюдал за происходящим по ту сторону кордона, образованного полицейскими. Нет, такого не должно было случиться. Мысли вихрем проносились у него в голове. Компьютерное моделирование, оценки надежности и эксперименты в аэродинамической трубе не предсказывали ничего подобного. Надежность моста не вызывала у него сомнений. Мост Millenium Bridge не должен был разрушиться, подобно мосту Tacoma Narrows Bridge, печально известной «Галопирующей Герти», предсмертная агония которой запечатлена на старых кинопленках.[175] На этих записях видно, как судорожно изгибается мост под напором ветра, разрушаясь под воздействием торсионных колебаний. Тем не менее что-то заставляло Millenium Bridge резонировать. Полиция перекрыла доступ на мост, но он продолжал раскачиваться. Уже в понедельник, 12 июня, то есть через два дня после открытия, растерянные и сконфуженные городские власти были вынуждены закрыть мост Millenium Bridge.
Критики первоначального проекта полагали, что «Луч света» настигло заслуженное возмездие. Лорд Фостер уже не рассчитывал на благодарность со стороны лондонцев: осаждаемый журналистами, он выдавил из себя лишь несколько нелестных слов о строителях моста, с которыми ему пришлось сотрудничать. Строительная компания Ove Arup сразу же приступила к тестированию вибрационных характеристик моста в надежде понять, какая ошибка была допущена ими[176]. Они прикрепили к мосту огромные вибромашины и начали систематические испытания на разных частотах вибрации. Когда к мосту приложили горизонтальные вибрации с частотой, равной примерно одному циклу в секунду, он начал выписывать такие же S-образные кривые, какие наблюдались в день открытия.
Это было ключом к разгадке. Один цикл в секунду – это половинная частота ходьбы человека в обычном темпе. Проектировщикам моста известно, что обычный темп ходьбы человека – это примерно два шага в секунду, но основной эффект этих повторяющихся шагов заключается в создании вертикального, а не бокового усилия, поэтому ходьба не может быть причиной поперечных раскачивания моста. Внезапно инженеров осенила догадка: люди действительно с каждым шагом создают небольшое боковое усилие: когда вы ставите на землю правую ногу, вы отталкиваетесь по-одному, а когда ставите на землю левую ногу, вы отталкиваетесь по-другому. Эти попеременные боковые усилия создают колебания, частота которых примерно равняется половинной частоте ходьбы человека, то есть одному циклу в секунду, а не двум. Никто даже не задумывался над этим фактом: это не предусматривалось стандартными инструкциями для проектировщиков мостов в Великобритании. Как бы то ни было, эти боковые усилия невелики, а поскольку люди, передвигающиеся по мосту, как правило, не шагают в ногу, все боковые усилия, направленные влево и вправо, возникают в произвольные моменты времени и, следовательно, компенсируют друг друга. Но если по какой-то причине люди начнут шагать синхронно, все боковые усилия будут суммироваться и концентрироваться. Это, конечно же, может вызвать проблемы.