Ритм Вселенной. Как из хаоса возникает порядок — страница 59 из 77

от него всегда можно было избавиться, туго растянув свиткообразную волну (представьте, что волна изготовлена из эластичной ткани). Принципиально важным для нас в свиткообразной волне было то, что она начинается и заканчивается на нити. Других границ у такой поверхности нет. Воспользовавшись воском другого цвета, я приступил к конструированию поверхности волны, кусок за куском, каждый раз начиная вдоль нити и продвигаясь дальше, пока все такие куски не сложились в один сплошной лист.

После этого нужно было уяснить, сколько сторон у такого листа: одна или две? На первый взгляд, этот вопрос звучит странно: разве бывают односторонние поверхности? Самым знаменитым примером является так называемый лист (лента, петля) Мебиуса: полоска бумаги, скрученная на полоборота и замкнутая в виде кольца. Если провести пальцем по поверхности такого контура, начиная с любой его точки, то в конце концов ваш палец вернется в ту же точку – но на другой стороне бумаги (правда, такое утверждение было бы неправильным, поскольку никакой «другой» стороны нет: передняя и задняя стороны являются одним и тем же). В этом смысле у листа Мебиуса есть только одна сторона.

Если бы мои восковые поверхности представляли собой нечто подобное, это было бы плохо. С точки зрения химических законов, свиткообразная волна должна представлять собой двустороннюю поверхность из-за непреложного факта, касающегося возбудимой среды: волны распространяются перпендикулярно самим себе, вторгаясь на неактивные территории и оставляя позади себя резистентную «выжженную пустыню». Это означает, что у такой волны есть передняя и задняя сторона, тогда как у листа Мебиуса есть только одна сторона. Это можно сформулировать по-другому. Представьте, что вы закрасили одну сторону листа Мебиуса красным цветом (сторону, которая движется вперед), а другую его сторону вы закрасили черным цветом (сторону, за которой остается «выжженная пустыня»). Но то и другое является одной и той же стороной, и в конце концов вам придется красить черным цветом поверх красного. Все концепция распространения волны вперед утрачивает смысл, если волна оказывается односторонней.

Трилистник можно изображать разными способами. Интересно отметить, что некоторые из них ведут к односторонним поверхностям (и, следовательно, неприемлемы), тогда как другие дают желаемые двусторонние поверхности, то есть являются подходящими кандидатами на форму волнового фронта. Поэкспериментировав еще немного, я пришел к выводу, что все приемлемые поверхности топологически эквивалентны, то есть обладают подходящим изгибом и растяжением, причем каждую из них можно непрерывно деформировать, превращая в любую другую. Таким образом, существовал лишь один правильный ответ, и этот ответ уже был известен нам. Вот как должна была выглядеть поверхность свиткообразной волны для трилистника.



Нам предстояло ответить на следующий вопрос: должен ли результирующий свиток быть скрученным, и если да, то в какой степени. Чтобы измерить это скручивание экспериментальным путем, я укладывал кусок нити вдоль поверхности из воска так, чтобы он всегда пролегал параллельно ее наружному краю, оказываясь лишь на миллиметр внутри ее, и продолжал укладывать эту нить вдоль всей поверхности, пока она не соединялась со своим началом, то есть пока не замкнется контур. Этот контур также образовывал трилистный узел – в точности такой, как первоначальная нить, а вместе они определяли два края воображаемой ленты.

Эта лента напоминала мне что-то из моей дипломной работы в колледже, в которой рассматривалась топология сверхспиральных молекул ДНК. Ключевой концепцией в том случае была математическая величина, называемая числом зацеплений в двухцепочечной сверхспиральной ДНК[219], которая, грубо говоря, показывает, сколько раз одна нить ДНК обвивается вокруг другой нити ДНК, помимо обвивания, предполагаемого самой двойной спиралью. Эта величина зависит как от скручивания в ДНК, так и от ее трехмерного пути в пространстве. Теперь, в случае свиткообразной волны, число зацеплений ленты должно заключать в себе всю важную информацию о скручивании волны, а также о форме ее заузленной нити. Когда я вычислил число зацеплений, оказалось, что оно равняется нулю. Замечательно! Все оказалось так просто. Свиткообразные волны в форме трилистника могут существовать, а число зацеплений у них всегда равняется нулю. Позже нам удалось доказать, что то же самое должно быть справедливо для любого узла, а не только для трилистного узла.

По окончании лета я перебрался в Бостон, чтобы поступить в магистратуру в Гарвардском университете. Впрочем, я продолжал поддерживать контакты с Уинфри. Нам предстояло написать несколько статей; к тому же нам нужно было найти ответы на две давние загадки. Зимой того же года я навестил Уинфри в доме его родителей, в городке Лонгбоут-Ки, Флорида, где нам наконец-то удалось решить проблему топологии свиткообразной волны в ее наиболее общей форме. Нам удалось доказать, что произвольное количество колец из свитка могут быть разнообразными способами связаны, скручены и заузлены между собой при условии, что они удовлетворяют единственному уравнению: число зацеплений ленты каждого кольца плюс все его взаимные связи с другими кольцами должно в сумме равняться нулю. В противном случае соответствующая структура оказывалась недопустимой. С некоторой долей иронии мы называли это принципом исключения[220], по аналогии с принципом исключения Паули в химии, который ограничивает атомную структуру элементов и дает начало картинам, которые мы наблюдаем в периодической таблице элементов. Для нас «элементами» были разрешенные конфигурации колец из свитка и узлов, расположенные в порядке возрастания сложности. «Водородом» было для нас отдельно взятое кольцо из свитка, в котором не было ни узлов, ни скручиваний. «Гелием» было два кольца, связанные друг с другом и скрученные однократно.

Спустя несколько месяцев мы провели лето в Лос-Аламосской национальной лаборатории, работая на самом быстродействующем суперкомпьютере в мире. (Это был Cray-1, но местные творцы атомной бомбы называли его более зловещим именем «X-машина».) С помощью Мела Пруитта, местного специалиста по компьютерной графике, мы наконец-то построили картины скрученного кольца из свитка, которые позволили нам раскрыть секреты неуступчивой сингулярности, которая, как нам было известно на основе абстрактных математических рассуждений, должна проходить через его центр. Увидев эти картины, мы с Уинфри раскрыли рты от удивления. Это было все равно что встретить давнего друга по переписке из какой-то другой страны, которого мы никогда не видели, но образ которого пытались нарисовать в своем воображении.

На протяжении двадцати лет, которые прошли с того времени, в научном мире отмечался всплеск интереса к спиральным и свиткообразным волнам. За это время химики выполнили с помощью компьютерной видеозаписи гораздо более тщательные измерения BZ-реакции и обнаружили, что спирали не всегда вращаются вокруг одной точки – зачастую они отклоняются в стороны[221]. Внутренний кончик спиральной волны может вращаться по кругу, или вырисовывать картины цветков, или даже хаотически блуждать. Математики с жадностью накинулись на эти результаты, объясняя их как нестабильности, являющиеся следствием нелинейной динамики.

Роль Священного Грааля во всем этом продолжает оставаться за сердечными аритмиями[222]. Многие кардиологи и физиологи экспериментальным путем подтвердили, что спиральные и свиткообразные волны могут вызывать тахикардию, хотя путь к вентрикулярной фибрилляции остается противоречивым. Наиболее вероятными подозреваемыми являются блуждающая спиральная волна, разделение одной спирали на несколько и возрастание нестабильности трехмерной свиткообразной волны. Несколько групп кардиологов и математиков упорно работают над решением этой проблемы, и истинный виновник этих опасных недугов вскоре может быть выявлен.

В течение всего этого времени Уинфри неустанно занимался свиткообразными волнами и пытался выяснить их возможную роль в возникновении сердечных аритмий. Его воображение по-прежнему будоражили образы узлов и связей; но теперь его в большей степени интересовала динамика узлов и связей, а не их фиксированная геометрия, которую мы исследовали вместе. Опираясь на огромную мощь современных суперкомпьютеров, он вместе со своими студентами смоделировал движение связанных и заузленных свиткообразных волн[223]. Их нити неистово болтаются из стороны в сторону и скручиваются между собой, когда волны от части одной нити ударяют друг о друга. Тем не менее, многие из этих структур оказываются на удивление устойчивыми: у них не наблюдается самопроизвольное развязывание. В этом смысле они фундаментальны, подобно элементарным частицам в квантовой физике. Они представляют собой базовые локализованные решения уравнений поля для возбудимой среды[224]. Они должны иметь важное значение для нас. Именно поэтому Уинфри никогда не откажется от их изучения.

Он также пытался найти (но еще не нашел) простой закон, который мог бы объяснить, как именно эти нити плавно скользят и скручиваются. Даже если бы удалось найти элегантный ответ на этот вопрос, никто не знает, имеет ли он какое-то значение для выявления причин аритмии. До сих пор в сердечной мышце удалось обнаружить только самую элементарную из свиткообразных волн: прямой свиток без узлов и связей. Не теряя надежды на получение снимка своих неуловимых частиц, Уинфри вернулся в лабораторию и изобрел новый вид оптической томографии[225] для BZ-реакции. Его работы получили заслуженное признание в научном мире: в 1984 г. он получил премию Фонда Макартура, присуждаемую за гениальные научные открытия; в 1989 г. – премию по кардиологии Einthoven Award; а в 2000 г. – премию имени Норберта Винера по прикладной математике. Его сын Эрик – компьютерный вундеркинд подросткового возраста во времена, когда я познакомился с ним – также недавно получил премию Фонда Макартура (между прочим, они стали первой в истории парой «отец и сын», ставшей лауреатами этой престижной премии). Что же касается вклада Уинфри в изучение связанных осцилляторов и синхронизма, то именно он продемонстрировал нам чудеса, которые случаются, когда осцилляторам предоставляется возможность свободно взаимодействовать между собой в пространстве; именно он показал нам, как они самоорганизуются вокруг точек, в которых отсутствует время, продуцируя спирали в двух измерениях и свиткообразные волны в трех измерениях. В предстоящие годы ученые приступят к изучению еще более общей формы соединения, когда осцилляторы оказываются связаны не только со своими соседями в обычном пространстве, но и со своими соседями в одном загадочном и мощном виде сети – виде, который соединяет всех нас лишь шестью степенями связности.