Начав осенью 1994 г. свою преподавательскую деятельность в Корнельском университете, в качестве одной из своих первых служебных обязанностей я должен был организовывать проведение ритуала, известного как квалификационный экзамен. Четверо профессоров сидели бок о бок в аудитории, где, кроме них, находился лишь экзаменуемый студент, который стоял у доски, вооружившись кусочком мела. В течение получаса мы донимали беднягу вопросами по математике. Предполагалось, что экзаменуемый отвечает на вопросы с ходу, без предварительного обдумывания. Если у экзменаторов складывалось впечатление, что ответ на очередной вопрос не вызывает у студента затруднений, его прерывали и задавали следующий вопрос. Вопросы задавались в порядке возрастания их сложности. Задавая вопросы, профессора пытались нащупать «слабые места» экзаменуемого.
Я задавал вопросы по прикладной математике. За день нам предстояло проэкзаменовать четырех или пятерых студентов. Одним из экзаменуемых был Дункан Уоттс, долговязый австралиец с уверенной улыбкой и развитой мускулатурой, что делало его похожим на «зеленый берет». Он поступил в Корнельский университет из-за своего увлечения теорией хаоса. У себя дома, в Австралии, он считался весьма авторитетным физиком. Он был одним из лучших студентов во время учебы в Академии вооруженных сил и претендентом на получение стипендии, учрежденной фондом Rhodes Scholarship (эта стипендия считается одной из самых престижных в мире).
Председатель экзаменационной комиссии кивнул головой в мою сторону: «Профессор Строгац задаст первый вопрос». Я попросил Дункана решить уравнение Лапласа в серповидной области, воспользовавшись методом конформного отображения. Другие профессора с недоумением воззрились на меня. Им было очевидно, что эта тема не изучается в университетских курсах математики (будучи начинающим преподавателем, я не знал этого). Дункан несколько секунд бормотал что-то себе под нос (с трудом разобрав несколько слов, я понял, что во время учебы в колледже он не изучал конформные отображения). Осознав свою оплошность, я предложил ему ответить на другой вопрос, но одному из моих коллег, по-видимому, понравилось, как накаляется атмосфера в аудитории, и он предложил Дункану ответить именно на первый вопрос.
Шаг за шагом, Дункан нащупывал свой путь к решению этой задачи (разумеется, ему не был известен стандартный способ ее решения). Тем не менее, непонятно как, но он все же нашел путь к правильному ответу (возможно, это удалось ему исключительно за счет огромного волевого усилия). Думаю, он сильно волновался, но каких-либо внешних проявлений волнения не было заметно. Более того, он производил впечатление человека, которого увлекает сам процесс поиска решения.
Такая реакция Дункана на необычную ситуацию сыграла для меня решающую роль несколько месяцев спустя, когда я обратил внимание на его фотографию, прикрепленную к двери его кабинета. На этой фотографии Дункан был запечатлен висящим на кончиках пальцев на краю Пойнт-Перпендикуляр, морской скалы высотой около 70 метров в Австралии. Я сразу же понял, что нашел для себя еще одного достойного аспиранта.
Мы начали с подбора подходящей темы для написания диссертации. Может быть, остановиться на какой-либо проблеме, связанной с использованием хаотических лазеров для обеспечения информационной безопасности в системах связи, проблеме, связанной с осцилляциями в сосудах лимфатической системы? Но ни лазеры, ни лимфатическая система не вызывали у нас прилива энтузиазма. После полугодового пребывания в состоянии неопределенности мы оба испытывали большое разочарование.
Однажды весной 1995 г. я читал на факультете нейробиологии и поведения лекцию по синхронизации светлячков; на этом факультете мой коллега Рон Хой вместе со своими студентами занимался изучением системы связи у сверчков. В ходе лекции я подчеркнул, сколь незначительно до сих пор поле соприкосновения между теорией синхронизации и какими-либо реальными биологическими примерами, и поинтересовался, не могут ли они оказать нам какую-либо помощь в этом отношении, организовав, например, проведение ряда экспериментов по коллективному поведению сверчков. Один из младших научных работников, Тим Форрест, проявил интерес к моему предложению. Во время учебы в колледже он считался одним из лучших знатоков математики, а сейчас слыл экспертом по биоакустике. Он сказал мне, что охотно занялся бы изучением того, как в местах большого скопления сверчков самцы сверчков синхронизируют свое стрекотание, стремясь обратить на себя внимание самок[234]. Он предложил изловить некоторое количество этих «животных» (именно так он называл их) и вызвался организовать проведение ряда экспериментов с целью проверки наших математических моделей и, возможно, даже поиска каких-то новых моделей.
Дункану понравилась идея такого проекта, и он начал регулярно общаться с Тимом по вопросам подготовки к реализации этого проекта. Между тем мы размышляли над экспериментами, которые нам хотелось бы провести. Мы мечтали о том, чтобы «измерить» одновременно трели всех сверчков и отследить, буквально секунда за секундой, их продвижение в сторону синхронизма: ничего подобного еще не было сделано в отношении светлячков, клеток-задатчиков циркадных ритмов или какой-либо другой совокупности биологических осцилляторов. Еще одной нашей мечтой было протестировать фазовый переход, существование которого было уже давно предсказано моделями Уинфри и Курамото, но никогда еще не проверялось эмпирическим путем. Наш план в этом отношении заключался в том, чтобы систематически изменять связь между сверчками. При низком уровне связи, когда они практически не способны услышать друг друга, разница в их естественных частотах стрекотания должна мешать установлению синхронизма между ними. Подобно бегунам на дорожке стадиона, которые не могут все время бежать плотной группой, поскольку их физические способности слишком различны, быстрые сверчки должны опережать медленных в случае, если уровень связи очень низок. В таком случае стрекотание большого сообщества сверчков будет напоминать какофонию. С другой стороны, если бы нам удалось постепенно повышать степень взаимного влияния сверчков (все больше повышая громкость их стрекотания или каким-либо образом повышая чувствительность сверчков), то, согласно теории Уинфри – Курамото, мы смогли бы выявить критический уровень связи, при котором наблюдается резкий переход сверчков к синхронному стрекотанию.
Даже если бы нам не удалось обнаружить фазовый переход, в любом случае мы надеялись зафиксировать, как возникает взаимная синхронизация в реальной популяции сверчков. Эксперименты, которые проводил когда-то один из бывших консультантов Тима, показали, что отдельно взятый сверчок приспосабливается к сигналам, выдаваемым другими сверчками. Таким образом, если он услышит такой сигнал непосредственно перед тем, как он собрался застрекотать, он переводит стрелку своих внутренних часов вперед. Или, если он услышит стрекотание сразу же после своего собственного стрекотания (а это указывает на то, что он несколько поторопился со своим стрекотанием), его нервная система автоматически скорректирует его внутренние часы таким образом, чтобы в следующий раз он начал стрекотать несколько позже. (В этом отношении нервная система сверчка действует во многом подобно маятниковым часам Гюйгенса, когда отрицательная обратная связь вносит такие коррективы, которые способствуют достижению синхронизма.) Если бы мы могли оценить количественно ритм стрекотания многих отдельных сверчков в изоляции и описать, каким образом каждый отдельный сверчок изменяет свой ритм в ответ на стрекотание других сверчков, наши математики наверняка смогли бы предсказать коллективное поведение сверчков в достаточно широком диапазоне условий.
Тим сконструировал весьма оригинальные маленькие звукоизолированные коробочки, в каждую из которых предполагалось поместить одного сверчка. Каждая такая коробочка была снабжена миниатюрным микрофоном для передачи стрекотания обитателя данной коробочки другим сверчкам, а также миниатюрным громкоговорителем, чтобы было слышно сигналы, поступающие извне. Эта весьма изощренная экспериментальная конструкция позволяла нам управлять степенью взаимодействия между сверчками: мы могли усиливать стрекотание или ослаблять его до уровня едва слышного шепота. Более того, мы могли даже устанавливать связи между конкретными сверчками, то есть определять, какой сверчок какого слышит, соединяя коробочки между собой в те или иные конфигурации.
Размышляя над теми или иными возможностями, Дункан начал обдумывать вопрос связей в более общем плане. В полевых условиях было невозможно утверждать наверняка, какие сверчки каких слышат. Сторонний наблюдатель мог лишь сказать, что сверчки расселись по деревьям, но в том, как именно они расселись, невозможно было бы уловить какую-то закономерность. Например, самец мог бы обращать внимание лишь на ближайших своих соперников. Возможно, он прислушивался бы ко всем остальным сверчкам. Невозможно было бы даже понять, какую роль в этом случае играет система связей между сверчками; может быть, они синхронизировали бы свое стрекотание в любом случае.
Однажды в январе 1996 г. Дункан заглянул ко мне в кабинет и высказал оригинальную идею, которая касалась еще одного изменения направления его исследований. Размышляя над вопросом связей между сверчками, он внезапно вспомнил о том, что однажды сказал его отец: о том, что лишь шесть рукопожатий отделяют каждого из нас от президента Соединенных Штатов. Дункан подумал: если теория шести рукопожатий действительно верна, то что она может означать с точки зрения связей, существующих в нашем мире в целом?
Я ответил ему, что, конечно же, слышал о шести степенях отчуждения. Шесть степеней отчуждения – это скрытая математическая проблема, которую еще предстоит сформулировать.
Но это еще не все, продолжал Дункан. Эти шесть степеней отчуждения связаны с тем, что мы пытаемся выяснить в отношении сверчков. Допустим, некая сеть биологических осцилляторов связана между собой таким образом, что каждый из них находится на расстоянии пары-тройки рукопожатий от остальных. Влияет ли такая система связей на то, как именно такая группа будет достигать синхронизации? Будет ли она синхронизироваться очень быстро и очень легко по причине наличия столь тесных связей в этой группе? Будет ли в такой системе по-прежнему наблюдаться фазовый переход по мере увеличения степени связности, подобно тому, как это происходит в модели Курамото?