[243], который был до невероятности беспомощен во всех аспектах повседневной жизни – поговаривают, он не умел даже намазать масло на кусок хлеба. Тем не менее Эрдёш был одним из самых плодовитых и изобретательных математических умов XX столетия. Злоупотребляя крепким кофе и амфетаминами, бесконечно странствуя по миру со своим неизменным, видавшим виды чемоданчиком, он появлялся у вас на пороге и заявлял: «Я открыт для любых идей». Это означало, что он готов работать вместе с вами над любой нерешенной математической проблемой.
Эрдёш сотрудничал со столь многими людьми, что большой популярностью среди математиков пользовалась игра на вычисление вашего «числа Эрдёша»[244]. Если вы принадлежите к числу немногих избранных, кто опубликовал статьи в соавторстве с Эрдёшем (а таковых насчитывалось 507 человек), то ваше число Эрдёша равняется 1. Если вы не опубликовали ни одной статьи в соавторстве с самим Эрдёшем, но опубликовали статьи в соавторстве с тем, кому приходилось публиковать статьи в соавторстве с самим Эрдёшем, то ваше число Эрдёша равняется 2. Математики шутили, что если вы чего-то стоите как математик, то ваше число Эрдёша не должно быть меньше 2. Существует даже сайт, на котором перечислены все, кому посчастливилось иметь число Эрдёша, равное 1 или 2. Для лиц, у которых число Эрдёша равно 3, списка не существует. Если бы кто-то смог составить такой список, то он оказался бы чрезвычайно большим. (Я тоже попал бы в него.) К сожалению, не располагая полным списком, мы не могли бы вычислить среднюю длину пути или кластеринг для этой социальной сети. Человеческие сети оказались дьявольски неуловимы.
Каждый раз, когда мы пытались описать свою работу людям, далеким от науки, они неизменно вспоминали игру «в Кевина Бейкона». Мы всегда высмеивали ее как нечто, не достойное серьезного обсуждения. Но теперь мы увидели в этом интересную возможность, выход из нашего затруднительного положения. Такая сеть из киноактеров могла служить суррогатом социальной сети. Вместо людей, которых соединяют друг с другом отношения дружбы, такая сеть состояла бы из киноактеров, которых соединяют друг с другом фильмы, в которых они снимались. Считается, что два актера, которые снимались в одном и том же фильме, «отчуждены» друг от друга на один шаг, и т. д. Такая сеть, хоть и кажется несколько эксцентричной, обладает тем преимуществом, что ее характеристики могут быть известны нам во всей их полноте. В интернет-базе данных фильмов (Internet Movie Database) содержатся сведения об исполнителях ролей практически всех художественных фильмов, которые когда-либо выходили на экраны. С другой стороны, величина этой базы данных сама по себе может стать серьезной проблемой: по состоянию на апрель 1997 г. она содержала сведения почти о четверти миллиона актеров, поэтому объем соответствующей вычислительной работы оказался бы поистине гигантским. Даже суперкомпьютер Корнельского университета, один из крупнейших в мире, столкнулся бы с серьезными проблемами, если бы всю эту информацию ему пришлось хранить в своей памяти.
К счастью, Бретт Тьяден (он же «Оракул Бейкона»[245]), ученый-компьютерщик в университете Вирджинии, уже потратил несколько недель на вычисление кратчайшей цепочки фильмов между любой парой актеров. В ходе этих вычислений он выяснил, что такая сеть обладает интересной глобальной структурой. В ней доминирует одна огромная взаимосвязанная область (получившая название «гигантский компонент»), заключающая в себе 90 % всех актеров, в том числе Кевина Бейкона и всех остальных киноактеров, о которых вам приходилось слышать. Но она также содержит небольшое количество крошечных островков, групп малоизвестных киноактеров, отрезанных от остальной «актерской вселенной» (это могли быть, например, люди, игравшие в одном фильме, который они снимали в актерской школе вместе со своими друзьями, причем ни один из них больше не снимался ни в каком другом фильме).
Воспользовавшись данными, полученными Тьяденом, Дункан подсчитал, что любые два произвольно выбранные киноактера в «гигантском компоненте» отчуждены в среднем 3,65 фильмами – впечатляюще малая величина, если учесть, что в этих фильмах участвуют актеры из многих стран, а сами фильмы относятся к разным жанрам и эпохам, начиная с эпохи немого кино и до настоящего времени. Если бы сеть была полностью произвольной, соответствующее число было бы меньшим, не ненамного: 2,99. Кластеринг, с другой стороны, оказался чрезвычайно большим: 0,79, то есть примерно в 3000 раз больше, чем в случае произвольной сети.
Таким образом, снова проявилась такая же дуальность: короткие цепи и высокий кластеринг, что является признаком сети тесного мира. По какой-то причине – может быть, в силу счастливого стечения обстоятельств, а может быть, в силу каких-то более глубоких причин – все три сети оказались именно тем, что нам требовалось. Каждая из сетей, на которые мы сразу же обратили внимание (а они не были специально отобраны), оказались сетями тесного мира. Такая схожесть была особенно удивительна в свете несопоставимости их размеров и научного происхождения. У нас начало складываться впечатление, что архитектура тесного мира встречается повсеместно.
Между прочим, этот анализ низвел Кевина Бейкона с его пьедестала. Он оказался лишь 669-м в списке киноактеров, имеющих самые многочисленные связи. (Этот показатель измерялся средним отчуждением киноактера от всех остальных в этом «гигантском компоненте». Согласно этому показателю, центром голливудской «вселенной» является Род Стайгер. Как ни странно, вторым и третьим номерами оказались Кристофер Ли и Дональд Плисенз, известные главным образом своими ролями во второсортных фильмах ужасов.
После того как мы продемонстрировали, что сети тесного мира не только существуют в реальности, но даже могут встречаться повсеместно, нам оставалось ответить на исходный вопрос Дункана: будут ли осцилляторы, связанные между собой по типу сети тесного мира, синхронизироваться с большей или меньшей готовностью, чем они синхронизировались бы в традиционной регулярной сети? На этот вопрос можно было бы в конце концов ответить, по крайней мере теоретически, с помощью разработанной ранее модели преобразования. Каждый узел в такой сети теперь представлял бы некий самоподдерживающийся осциллятор – которым мог бы быть стрекочущий сверчок, мерцающий светлячок, нейрон-задатчик ритма, – а связи в такой сети отражали бы соответствующую картину взаимодействий.
Одна из простейших моделей такого рода была к тому времени уже изучена Курамото и его коллегами Хидецугу Сакагути и Сигеру Синомото[246]. Они рассматривали те же виды осцилляторов, что и в оригинальной модели Курамото: фазовые осцилляторы с распределенными естественными частотами, связанные между собой силой притяжения синусоидальной формы. (Представьте себе помещение, в котором собралось множество людей. Каждый из присутствующих пытается аплодировать в унисон, то ускоряя, то замедляя свое хлопанье в зависимости от временного сдвига между его собственным хлопаньем и коллективными аплодисментами. Поскольку скорость коллективного хлопанья постоянно меняется в диапазоне от размеренного до неистового, людям, собравшимся в этом помещении, все время приходится подравнивать скорости своего хлопанья к текущей скорости коллективных аплодисментов.) Но, в отличие от первоначальной модели Курамото, которая предполагала, что осцилляторы соединены между собой по принципу «каждый с каждым», на этот раз японские физики предполагали кольцевой принцип соединения осцилляторов, согласно которому каждый осциллятор соединялся с фиксированным количеством соседей по обе стороны от себя. (Представьте себе арену, наподобие футбольного стадиона, где каждый болельщик слышит лишь тех, кто сидит рядом с ним.) Курамото и его коллеги обнаружили, что кольцо разнородных осцилляторов с трудом достигает всеобщего синхронизма; вообще говоря, такое кольцо фрагментируется на множество небольших групп соседей, причем члены одной группы осциллируют с одной и той же средней скоростью, однако в разных группах эта скорость оказывается разной. Разные сектора стадиона в этом случае хлопали бы с разными скоростями.
Мы хотели выяснить, приведет ли переустановка связей в кольце к повышению его способности синхронизироваться. Как и в ходе предыдущих сеансов моделирования, мы преобразовывали кольцевую структуру в сторону произвольной сети, превращая некоторые из ее первоначальных соединений в произвольные. (Это подобно тому, как если бы у некоторых из болельщиков были мобильные телефоны, с помощью которых они могли бы слышать аплодисменты, раздающиеся в других секторах стадиона, но неслышные для их соседей по сектору.) Мы обнаружили, что крошечный процент таких «перемычек»[247] – порядка 1–2 процентов в кольце из 1000 осцилляторов – резко изменял динамику системы в целом. Система самопроизвольно переходила от локального несовпадения к глобальному консенсусу. Теперь все осцилляторы приводили свои ритмы к единой компромиссной частоте.
Хотя нам не удавалось объяснить эти результаты с математической точки зрения, напрашивалось интуитивное объяснение: «перемычки» создавали каналы быстродействующей связи, благодаря чему взаимное влияние быстро распространялось по всей популяции. Разумеется, такого же эффекта можно было достичь путем непосредственного соединения осцилляторов по принципу «каждый с каждым», но при этом существенно возрастало бы количество соединений. Совершенно очевидно, что архитектура тесного мира позволяла добиться глобальной координации гораздо эффективнее.
К тому же архитектура тесного мира, возможно, оказалась бы предпочтительным вариантом в других случаях, когда приходится обеспечивать быстрое продвижение информации по чрезвычайно сложной системе. Следующий случай, который мы решили изучить, представляет собой классическую задачу компьютерной науки, которая называется «проблемой классификации плотности для одномерных двоичных автоматов»