fn new(name: &'static str) -> Self;
// Instance method signatures; these will return a string.
fn name(&self) ->&'static str;
fn noise(&self) ->&'static str;
// Traits can provide default method definitions.
fn talk(&self) {
println!("{} says {}", self.name(), self.noise());
}
}
impl Sheep {
fn is_naked(&self) -> bool {
self.naked
}
fn shear(&mut self) {
if self.is_naked() {
// Implementor methods can use the implementor's trait methods.
println!("{} is already naked...", self.name());
} else {
println!("{} gets a haircut!", self.name);
self.naked = true;
}
}
}
// Implement the `Animal` trait for `Sheep`.
impl Animal for Sheep {
// `Self` is the implementor type: `Sheep`.
fn new(name: &'static str) -> Sheep {
Sheep { name: name, naked: false }
}
fn name(&self) ->&'static str {
self.name
}
fn noise(&self) ->&'static str {
if self.is_naked() {
"baaaaah?"
} else {
"baaaaah!"
}
}
// Default trait methods can be overridden.
fn talk(&self) {
// For example, we can add some quiet contemplation.
println!("{} pauses briefly... {}", self.name, self.noise());
}
}
fn main() {
// Type annotation is necessary in this case.
let mut dolly: Sheep = Animal::new("Dolly");
// TODO ^ Try removing the type annotations.
dolly.talk();
dolly.shear();
dolly.talk();
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Derive
The compiler is capable of providing basic implementations for some traits via the #[derive] attribute. These traits can still be manually implemented if a more complex behavior is required.
The following is a list of derivable traits:
• Comparison traits: Eq, PartialEq, Ord, PartialOrd.
• Clone, to create T from &T via a copy.
• Copy, to give a type 'copy semantics' instead of 'move semantics'.
• Hash, to compute a hash from &T.
• Default, to create an empty instance of a data type.
• Debug, to format a value using the {:?} formatter.
// `Centimeters`, a tuple struct that can be compared
#[derive(PartialEq, PartialOrd)]
struct Centimeters(f64);
// `Inches`, a tuple struct that can be printed
#[derive(Debug)]
struct Inches(i32);
impl Inches {
fn to_centimeters(&self) -> Centimeters {
let &Inches(inches) = self;
Centimeters(inches as f64 * 2.54)
}
}
// `Seconds`, a tuple struct with no additional attributes
struct Seconds(i32);
fn main() {
let _one_second = Seconds(1);
// Error: `Seconds` can't be printed; it doesn't implement the `Debug` trait
//println!("One second looks like: {:?}", _one_second);
// TODO ^ Try uncommenting this line
// Error: `Seconds` can't be compared; it doesn't implement the `PartialEq` trait
//let _this_is_true = (_one_second == _one_second);
// TODO ^ Try uncommenting this line
let foot = Inches(12);
println!("One foot equals {:?}", foot);
let meter = Centimeters(100.0);
let cmp =
if foot.to_centimeters() < meter {
"smaller"
} else {
"bigger"
};
println!("One foot is {} than one meter.", cmp);
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
See also:
derive
Returning Traits withdyn
The Rust compiler needs to know how much space every function's return type requires. This means all your functions have to return a concrete type. Unlike other languages, if you have a trait like Animal, you can't write a function that returns Animal, because its different implementations will need different amounts of memory.
However, there's an easy workaround. Instead of returning a trait object directly, our functions return a Box which contains some Animal. A box is just a reference to some memory in the heap. Because a reference has a statically-known size, and the compiler can guarantee it points to a heap-allocated Animal, we can return a trait from our function!
Rust tries to be as explicit as possible whenever it allocates memory on the heap. So if your function returns a pointer-to-trait-on-heap in this way, you need to write the return type with the dyn keyword, e.g. Box.
struct Sheep {}
struct Cow {}
trait Animal {
// Instance method signature
fn noise(&self) ->&'static str;
}
// Implement the `Animal` trait for `Sheep`.
impl Animal for Sheep {
fn noise(&self) ->&'static str {
"baaaaah!"
}
}
// Implement the `Animal` trait for `Cow`.
impl Animal for Cow {
fn noise(&self) ->&'static str {
"moooooo!"
}
}
// Returns some struct that implements Animal, but we don't know which one at compile time.
fn random_animal(random_number: f64) -> Box {
if random_number < 0.5 {
Box::new(Sheep {})