L = 12 м. Как было сказано выше, единичный молниествол образует зону защиты в виде конуса, за пределы которого части строения не должны выступать. По мере увеличения высоты молниеотвода размеры конуса увеличиваются, и задача определения высоты молниеотвода — это подобрать такие размеры защитного конуса, при которых даже самые высокие и удаленные точки строения не выходили бы за его пределы.
Учитывая, что размеры молниеотвода будут получены путем графических построений, точность которых зависит от масштаба и качества чертежа, наиболее целесообразно его выполнять на миллиметровой бумаге (миллиметровке) в масштабе не менее 1 метр натуры в 1 сантиметре чертежа.
Чертеж необходимо начать с построения графика параметров молниеотводов в соответствии с табл. 2, для чего по горизонтальной оси в выбранном масштабе отложить значения R0, а по вертикальной — Н0. Отложенные точки попарно соединить прямыми линиями, как это показано на рис. 4.
Рис. 4.Графическое определение высоты единичного стержневого молниеотвода
В том же масштабе отложить координаты точек А и Б. Определить размеры R0 и Н0 конуса, за пределы которого точки А и Б не выходят. По величине Н0 (по табл.2) определить Н. Точки А и Б находятся внутри конуса, Н0 которого равно 18,4 м, что соответствует полной высоте молниеотвода по табл. 2 (Н = 20 м).
В строениях с металлической крышей она же является и молниеприемником, поэтому соединена с заземлителем. Этот вид молниезащиты, как правило, рассчитан на защиту конкретной строения. Заземляющее устройство не зависит от формы и размеров молниеприемника, и при расчете первого в случае использования металлической крыши в качестве молниеприемника можно воспользоваться сведениями, приведенными выше (одиночный стержневой молниеотвод).
Прежде чем приступить к расчету заземляющего устройства с достаточно малым сопротивлением, необходимо ознакомиться со свойствами земли и условиями, при которых между электродами заземления и землей может образоваться электрическое соединение с малым переходным сопротивлением. Электрофизические свойства земли, в которых находится заземлитель, определяются ее удельным сопротивлением ρ. За удельное сопротивление земли принимается сопротивление земли между противоположными плоскостями куба с ребрами в 1 м.
Как было сказано, наша страна располагается в семи климатических поясах, температура и влажность в которых разнятся в широких пределах. Для проектирования жилых зданий территория России по физико-географическим признакам разделяется на четыре района. На рис. 5 представлена карта России (со странами СНГ), на которой обозначены границы этих районов. Однако свойства земли (грунта) со сменой времен года будут меняться даже в пределах одного района.
Рис. 5.Карта схематического районирования территории России и стран СНГ по физико-географическим признакам
При расчетах этот факт учитывается в сезонном коэффициенте Кс.
Удельное сопротивление грунта измеряется при средней влажности и положительной температуре в Ом метрах или Ом сантиметрах (1 Ом∙метр =100 Ом∙сантиметрам).
Сезонный коэффициент Кс всегда больше единицы и призван компенсировать сезонное увеличение удельного сопротивления грунта.
Удельные сопротивления грунтов р и значения сезонных коэффициентов Кс приведены в таблицах 3 и 4.
Приведенные в таблице 3 данные относятся к грунтам, влажность которых — 10–20 % к их весу. Но грунт не однороден. Верхняя часть грунта на глубину около метра более подвержена намоканию, высыханию и промораживанию, что значительно изменяет удельное сопротивление верхней части грунта. Слои грунта, лежащие ниже уровня промерзания, имеют более стабильные показатели по влажности и температуре. Заземлители могут быть выполнены в виде вертикальных электродов или электродов в виде горизонтальных полос. Для того чтобы расположить электроды в более влажных и непромерзающих слоях грунта, их заглубляют так, чтобы верхняя часть вертикальных электродов находилась на глубине 0,7–1,0 м, а горизонтальные — полностью находились на этой глубине.
Верхний пахотный слой земли на приусадебном участке — это одна из самых больших ценностей крестьянского двора. Слой чернозема наращивается трудом нескольких поколений, и именно слой чернозема имеет решающее значение в получении урожая. Раскрытие и прокладка коммуникаций в крестьянском дворе, как правило, производится под дорогами, так как рытье канав связано с перемешиванием грунта, а следовательно, и потерей плодородного слоя. Заземлители молниеотводов, во избежание шагового поражения людей, должны располагаться в стороне от пешеходных дорожек, а следовательно, на земле, которая может быть использована для выращивания различных культур, в силу чего разрытие должно быть минимальным. Этим требованиям удовлетворяет заземляющее устройство с вертикальными заземлителями.
Основной электрической характеристикой заземлителя является сопротивление растеканию тока. Предположим, что в земле находится электрод и через него происходит замыкание на землю (рис. 6).
Рис. 6.Растекание тока от единичного электрода заземлителя
Вокруг электрода образуется электрическое поле и зона повышенных потенциалов, которые по мере удаления от электрода уменьшаются и на расстоянии 20 м становятся близкими к 0. Это явление называется растеканием тока. В зоне растекания тока находиться опасно. Как показано на рис. 6, передние ноги лошади находятся ближе к заземлителю, в зоне потенциала V2, а задние ноги — под потенциалом V1. Лошадь в данном случае является сопротивлением, к которому приложена разность потенциалов V2 - V1. В результате по лошади (через передние ноги, тело лошади и задние ноги) будет протекать ток, сила которого равна J = (V2 — V1)/R лошади, что может вызвать поражение электрическим током, называемое напряжением шага.
Зная величину удельного сопротивления грунта и длину электродов, можно, пользуясь приближенной формулой из таблицы 5, определить сопротивление растеканию одиночного электрода.
Искусственные заземлители, как правило, состоят из нескольких электродов, соединенных между собой проводниками. В том случае, если исключить их взаимное влияние друг на друга, расстояние между ними в заземлении должно быть не менее 25 м. Чем ближе находятся электроды один от другого, тем в большей степени сказывается их взаимное влияние. Для учета взаимного влияния электродов устанавливается коэффициент использования заземлителей.
В таблице б приведены коэффициенты использования вертикальных электродов, размещенных в ряд.
Сопротивление заземлителей при растекании тока молнии называется импульсным, и его определяют по формуле:
Rи = R∙aи
где:
R — сопротивление заземлителей при низкой частоте и малых плотностях токов на поверхности — при токах промышленной частоты;
aи — импульсный коэффициент; Rи — сопротивление заземлителей при растекании тока молнии — импульсное сопротивление.
Импульсное сопротивление непосредственному измерению не поддается, поэтому его оценивают косвенно по сопротивлению при промышленной частоте Rи и импульсному коэффициенту аи. Но импульсный коэффициент аи зависит от удельного сопротивления земли. Он тем меньше, чем больше удельное сопротивление грунта. Значение импульсного коэффициента аи в зависимости от удельного сопротивления грунта при вертикальных электродах представлено в таблице 7.
Связь между сопротивлениями при импульсе и промышленной (низкой) частоте представлена в таблице 8.
Пример 3. Необходимо определить величину сопротивления заземлителей на промышленной частоте для присоединения к нему импульсного заземлителя с сопротивлением 40 Ом∙р = 500 Ом∙м.
Решение. Импульсному заземлителю величиной 40 Ом соответствует заземлитель, рассчитанный по переменному току, сопротивление которого равно 60 Ом. В качестве технических способов электрозащиты в сельском доме применяются зануление и молниезащита. В ряде случаев требуется повторное заземление нулевого провода. Его необходимо выполнять на концах воздушных линий или ответвлениях длиной более 200 м, а также на вводах в здания, установки которых подлежат заземлению. Сопротивление каждого из повторных заземлителей на линиях 380/220 В — 30 Ом.
От прямых ударов молнии здания и сооружения II категории защищают заземлителями с импульсным сопротивлением не более 10 Ом, а в грунтах с удельным сопротивлением 500 Ом∙м и выше — с сопротивлением не более 40 Ом.
От прямых ударов молнии здания и сооружения III категории защищают заземлителями с импульсным сопротивлением не более 20 Ом, а в грунтах с удельным сопротивлением 500 Ом∙м и выше допускается не более 40 Ом. Для защиты ферм крупного рогатого скота и конюшен сопротивление не должно превышать 10 Ом.
Заноса высокого потенциала в здания и сооружения II категории можно избежать при применении кабельного ввода или кабельной вставки длиной не менее 50 м, а внешние наземные металлические коммуникации на вводе необходимо присоединить к грозозащитному или повторному заземлению.
Защиту зданий III категории от заноса высоких потенциалов по линиям электросети можно осуществить с помощью мер, предусмотренных для зданий II категории или благодаря присоединению к защитному заземлению внешних металлических коммуникаций на вводе, включая штыри и крюки изоляторов (рис. 7).
Рис. 7.Заземление крюков изоляторов