Самая большая ошибка Эйнштейна — страница 22 из 51


Эйнштейн с Луизой Райнер, американской актрисой немецкоавстрийского происхождения (середина 1930-х гг.). Ее ревнивый муж был уже в ту пору убежден, что у парочки страстный роман, хотя пик этих отношений пришелся на середину 1920-х.


Контраст между приятельницами Эйнштейна и Эльзой с ее беспрерывной болтовней и нарастающим разочарованием, оказался болезненным для всех участников этой драмы. Эйнштейну нравилось ходить под парусом, и когда ему удавалось выкроить свободное время, он отправлялся в их загородный дом на озере под Берлином, где ого ждала небольшая яхта Tümmler («Морская свинья»). Часами он в одиночестве кружил на ней по озеру, задумчиво шевеля рулем, пока ветер носил посудину туда-сюда. Его тамошняя экономка описывала одну его частую гостью, регулярно появлявшуюся в доме в отсутствие Эльзы: «Австрийская дама, моложе, чем фрау профессор, очень привлекательная, живая, обожала смеяться, в точности как сам герр профессор». В один памятный денек Эльза обнаружила на яхте «деталь туалета» другой женщины, и у супругов вспыхнули с виду холодные, но весьма яростные препирательства, тянувшиеся, с перерывами, несколько недель. Мужчины и женщины не созданы для моногамии, настаивал он, а Эльза признавалась близким подругам: жить с гением нелегко, о нет, очень даже нелегко.

Этот брак отнюдь не стал воплощением его или ее мечтаний. В письме, где Эйнштейн утешал взрослых детей Бессо после его кончины, он признавался: «По-человечески я в нем больше всего восхищался тем, что он сумел много лет прожить со своей женой не только в мире, но и в неизменной гармонии; к стыду моему, мне это не удалось, причем дважды».

Все бы ничего, будь это единственная трудность в жизни Эйнштейна. Но еще в 1917 году, когда, казалось бы, он мог вовсю наслаждаться триумфом после своего великого открытия, Эйнштейн обнаружил – как ему представлялось – катастрофический недостаток в своем великом уравнении (которое мы передаем здесь просто как G = T). И в 1920-е годы эта ошибка угнетала и мучила его все больше и больше.

* * *

В декабре 1915 года, выведя свою гениальную формулу G = Т, Эйнштейн с полным правом мог торжествовать, но эта работа его вымотала невероятно. Лишь к середине 1916-го он взялся за новую задачу, и лишь к концу года нашел в себе силы вернуться к G = Т.

До сих пор он рассматривал, как это уравнение описывает индивидуальные звезды и планеты (например, орбиту Меркурия или траекторию света далеких звезд, проходящего близ Солнца). Теперь же Эйнштейн решил «заняться более обширными участками физической вселенной». Ему хотелось понять, как его уравнение может применяться для рассмотрения всей Вселенной в целом.

Здесь-то он и углядел то, что счел катастрофической ошибкой. Ученые того времени полагали Вселенную чем-то статичным, фиксированным, неизменным – пространством, простирающимся на огромные расстояния, в котором существует бесчисленное множество звезд. Некоторые из них иногда могут слегка перемещаться, однако в целом Вселенная никогда не меняется. Но когда Эйнштейн пристально взглянул на свое соотношение G = T, ему стало ясно: оно предсказывает совсем иное. Если «Вещи», парящие в пространстве, достаточно отделены друг от друга, его уравнение позволяет им всем разлетаться под действием собственного хаотического движения. Мало того, уравнение как будто допускало и другой возможный сценарий. Если «Вещи», в определенном количестве плавающие в космосе, окажутся в достаточной близости друг от друга, они начнут «слипаться», и кривизна пространства, которую они при этом создадут, заставит еще большее количество объектов смещаться в их сторону, тем самым порождая неудержимый коллапс (схлопывание).

Это как если бы в Тихий океан рухнул гигантский объект, породив колоссальный водоворот, затягивающий в себя все на планете: воды, потом – острова, а вскоре – целые континенты. В масштабах Вселенной это означало бы постепенное появление раскинувшейся на все небо «долины», всасывающей в себя все вокруг. Более того, долина вскоре начала бы сворачиваться, поскольку плотность Вещей в ней (всех масс и энергий, которые в нее устремляются) еще сильнее увеличила бы геометрическую кривизну этой области, так что само пространство стало бы схлопываться.

Такое следствие его теории казалось невозможным. Не будучи астрономом, Эйнштейн все-таки знал основы этой науки. Считалось, что наша звездная система состоит из планет, вращающихся вокруг центра – Солнца. А наша Галактика (Млечный Путь) полна подобных звезд: некоторые больше Солнца, некоторые меньше, но все находятся в более или менее фиксированном положении. А больше ничего нет. Иммануил Кант называл это «Вселенной-островом»: чем-то фиксированным, стабильным, вечно неизменным. Вот почему те созвездия, о которых упоминали древние (Дева, Стрелец и т. п.), по-прежнему занимают примерно такое же положение на ночном небе, как и в Античную эпоху. Теперь же Эйнштейн увидел, что если его простое соотношение G = T, выведенное в 1915 году, справедливо, то такого не может быть: все во Вселенной должно находиться в постоянном движении.

Он оказался перед лицом непростой дилеммы. Да, он любил свое уравнение за простоту и ясность. Приятно было думать, что Вселенная устроена согласно столь несложному и красивому закону. Уравнение позволяло делать замечательно четкие предсказания о происходящем в Солнечной системе (скажем, о том, как звездный свет будет отклоняться, проходя близ Солнца). Однако это же уравнение, судя по всему, предсказывало и то, что в гораздо более широких масштабах Вселенная как целое меняется: все звезды в космосе когда-нибудь или навсегда разлетятся, или сольются в единый сгусток. Но каждый уважаемый астроном скажет, что такая картина неверна, ибо все наблюдения показывали: Вселенная стабильна и никогда не меняется в размерах. Неужели общее мнение ведущих астрономов мира ошибочно?

Кто-то должен уступить, решил Эйнштейн. И если наблюдаемые факты касательно Вселенной не изменятся, то ему придется изменить свою теорию. Раз его уравнение 1915 года предсказывает, что Вселенная меняется, он должен исправить уравнение, чтобы оно не давало такого прогноза. При этом останется в силе все то, что оно говорит об эффектах меньшего масштаба – скажем, о том, что наше Солнце заставляет пространство прогибаться в достаточной степени, чтобы отклонять проходящий рядом свет от звезд. Но то, что говорилось о более крупномасштабных эффектах (о тех, которые характеризуют структуру Вселенной в целом), надлежит поправить. И вот в феврале 1917 года Эйнштейн написал в Берлин, в Прусскую академию наук: «Я пришел к выводу, что в гравитационные уравнения, которые я представлял ранее, следует внести поправки, дабы избежать этих фундаментальных затруднений…» Да, он хотел изменить свое изящное соотношение G = T. Но как это сделать?

Эйнштейн уже довольно долго размышлял над этой проблемой. В своем послании 1917 года он сообщил о единственной поправке, какую смог придумать. В исходное уравнение пришлось ввести еще один параметр, который как бы ослабил левую часть формулы (где описывается геометрия пространства), слегка скомпенсировав гравитационное воздействие (подобно тому, как Атлас сдерживал тяжесть небес, чтобы звезды не упали на землю). Эйнштейн обозначил этот новый параметр греческой буквой «лямбда» (Λ). Позже его назовут космологической постоянной, поскольку он представлял собой фиксированное число (константу), действующее на космическом уровне. И вместо прекрасного в своей простоте и симметричности G = T у него получилось прихрамывающее G – Λ = T.

Не станем вдаваться в подробности того, как Эйнштейн пришел к своей космологической постоянной. Упрощенно говоря, G представляет геометрию нашей Вселенной, и Вселенная так сильно искривлена, что этот параметр достаточно велик для того, чтобы заставить звезды летать – подобно громадным камням, падающим в пропасть. Но если слегка уменьшить эту силу, звезды не будут падать, они по-прежнему будут парить в пространстве более или менее неподвижно: почти все тогдашние астрономы полагали, что на самом деле звезды именно так себя всегда и ведут. Эйнштейн словно бы заново нарисовал эту пропасть, так что теперь она уже не зияла такой страшной глубиной, и камни больше не катились в нее очертя голову. Вот какое действие произвело добавление лямбды.

Ему она никогда не нравилась. «Этот параметр, – говорил он с берлинской кафедры, – необходим лишь для того, чтобы обеспечить возможность почти статичного распределения вещества, как того требуют низкие скорости, с которыми движутся звезды; такие скорости – установленный факт». Астрономы заверяли его, что все звезды, которые мы наблюдаем, движутся относительно друг друга сравнительно медленно и/или случайным образом, однако подобное «почти статичное распределение вещества» отнюдь не вытекает из его исходного уравнения. Лишь благодаря поправке, которую он скрепя сердце ввел в это соотношение, Эйнштейн мог добиться того, чтобы оно соответствовало наблюдениям – вернее, тому, что они вроде бы показывали.

Может, лямбда и казалась необходимой для приведения эйнштейновского уравнения в соответствие с реальностью, но он чувствовал, что поправка «значительно ухудшила формальную красоту» его теории. Для Эйнштейна простота и красота уравнений служили основными признаками их справедливости. Он не верил, что какое-то божество или сила природы может, создав Вселенную согласно нескольким очень простым принципам, затем неуклюже добавить в них такие вот дополнительные поправки. В исходном G = T, выведенном в 1915 году, сквозил почерк Бога, наслаждающегося простотой своего творения. Эти два символа словно бы коренились в самой природе Вселенной: параметр G отражал суть того, как искривляется пространство, а параметр T – само существование Вещей в пространстве. Введенная же громоздкая лямбда служила лишь случайным дополнением к левой части уравнения, добавкой, призванной чуть ослабить силу тяготения (то есть сделать «пропасть» нашей Вселенной менее глубокой, а ее края менее отвесными, чтобы звезды – «камни» в нашем сравнении – не падали в нее).