– повар знает, что нужно подать двойной шницель (потому что первая единица внесена в клетку, где пересекаются два обозначения шницеля) и двойное пиво (по аналогичной причине) – и больше ничего.
Если повар решит пуститься во все тяжкие и добавить в меню третье блюдо (жареную картошку!), администрации заведения придется заказать новые блокноты, где будут чуть более обширные таблицы. Кстати, лучший вариант жареной картошки в Швейцарии именуют rösti, так что новая сетка будет выглядеть так:
Если теперь официант заполнит свою таблицу так:
0 0 1
0 3 0
0 0 0
– то повар будет знать, что требуются одна порция шницеля с жареной картошкой и три двойных пива. Этот очень вредный, но очень вкусный заказ можно весьма лаконично и эффективно записать таким вот набором чисел.
Допустим, в Цюрихе десятки таких ресторанов, и допустим, что они вдруг решили перестать конкурировать друг с другом. Теперь каждый из них подает каждое блюдо лишь в определенном количестве. Иными словами, в одном заведении каждый клиент может получить лишь одну порцию шницеля с жареной картошкой и три двойных пива – и только это. У входа в другой цюрихский ресторан прохожих завлекает увеличенное изображение листка из официантского блокнота:
1 0 0
0 0 0
0 0 1
– так что все знают, что в этом ресторане предлагают двойной шницель и двойную жареную картошку – и больше ничего. Другие рестораны предоставляют иные возможности, но в каждом заведении набор блюд ограничен и неизменен как в качественном, так и в количественном отношении. При этом набор цифр у входа в заведение покажет вам, какие деликатесы вас ждут внутри.
Вернемся теперь к относительности. Допустим, мы заказываем не еду, а форму какой-нибудь вселенной. Прежде всего следует узнать, каковы составляющие ее измерения (эквиваленты шницеля, пива и картошки). Для двухмерного пространства (подобного тому, где обитал наш мистер Квадрат) эти компоненты – изменения расстояния в направлении восток – запад (обозначим их как dx) и изменения расстояния в направлении север – юг (dy).
Эти компоненты мы и занесем в исходную таблицу официанта. Чтобы ее заполнить, нужно узнать, какие сочетания этих компонентов доступны. А когда мы обзаведемся этими двумя наборами данных (позволяющими нарисовать таблицу и заполнить ее), мы многое узнаем о том мире, который собираемся исследовать.
Официантская таблица упрощенно показывает нам, что такое метрический тензор. Само название свидетельствует о многом. Меры расстояния с использованием греческого корня «метрон» начали применяться после того, как в XVIII веке появилась новая система мер – французская. Эту систему назвали метрической. Метрика – просто некий способ организации объектов, позволяющий показать их взаимосвязь. Наборы чисел, которые используются как заказы в наших сверхэффективных цюрихских ресторанах, определяют, как соотносятся друг с другом компоненты блюд. Это ресторанная метрика, то есть способ организации таких объектов. Набор чисел, служащий «заказом» для наших вселенных, определяет, как их компоненты (пространственные элементы) соотносятся друг с другом.
Сотворение нашего мираВо Флатландии, где проживает мистер Квадрат, такая сетка позволяет получить четыре различные смеси dx и dy и различные количества этой «востоко-западности» или «северо-южности». Пустая таблица здесь выглядит так:
Как ее заполнить? Мы знаем, что на плоскости по определению должна соблюдаться теорема Пифагора: в прямоугольном треугольнике со гипотенузой ds и катетами dx и dy эти три стороны связаны соотношением dx² + dy² = ds². Поэтому флатландскую «таблицу заказа» можно заполнить так:
Иными словами, в таком ресторане можно заказывать двойное dx или двойное dy, но не их смеси. Все очень аккуратно: прямоугольные треугольники плотно прилегают друг к другу, квадраты не вспухают в стороны, и логично предположить, что время здесь тоже будет находиться «под прямым углом» по отношению к пространству. Комбинируйте составные части самым напрашивающимся образом, и вы создадите Флатландию. Господь вопрошает в Книге Иова: «Где был ты, когда Я полагал основания земли?.. Кто положил меру ей… или кто положил краеугольный камень ее?» Мы показали наиболее подходящий светский способ, каким это можно проделать.
Замечательно в этом методе то, что его можно легко распространить на большее число измерений. Допустим, некое благосклонное божество взирает сверху вниз на свое царство, заказывает побольше компонентов и – глядите! – возникает ресторан… то есть вселенная…. где таблица заказов куда обширнее.
Эйнштейновские уравнения выстроены на основе схожих сеток, но позволяют существовать весьма различным мирам. Конечно, эти таблицы побольше флатландских, и заполнять приходится не два ряда по две ячейки в каждом (позволяющие создать пространство лишь из двух измерений – «восточно-западного» и «северо-южного»), а таблицы 4×4, чтобы удалось скомбинировать три пространственных измерения и еще одно измерение – время. Кроме того, обычно эти эйнштейновские сетки заполняются не такими простыми «заказами», как флатландская, где по диагонали идет череда единиц, означающая, что вам могут принести лишь одну порцию каких-то блюд, а какие-то блюда вообще никогда не могут сочетаться. В четырехмерном мире соответствующая таблица заказов выглядела бы так:
Это скучный, неискривленный мир (подобный тому, который схематически изображен на рисунках из Главы восьмой).
Интереснее (и, как понял Эйнштейн, реалистичнее) позволить разным измерениям «смешиваться». Тогда можно будет заказать, к примеру, немного востоко-западности в смеси с небольшим количеством вверх-внизности, как в ресторане, где повара предлагают не только стандартное двойное пиво или двойной шницель. Такая картина куда ближе к той Вселенной, в которой мы обитаем и которую схематически изображает рисунок из Главы восьмой: в каких-то местах вверх-внизность смешана с востоко-западностью, и многие другие смеси тоже допустимы.
Слова кажутся неуклюжими, когда вы пытаетесь дать с их помощью полное описание того, что происходит во всех возможных ячейках таблицы. Слишком долго произносить: «Этот параметр размещается в ячейке, находящейся на пересечении третьего столбца и четвертого ряда». Куда быстрее сказать: «Это параметр для ячейки34». Эйнштейн с Гроссманом пошли еще дальше и вместо слова «ячейка» стали применять букву g. Когда же им хотелось показать всю череду столбцов и строк, пересечение которых дает ячейки, они использовали как подстрочные символы уже не цифры, а греческие буквы. Под сочетанием символов g34 Эйнштейн имел в виду то значение, которое нужно вписать в ячейку, находящуюся на пересечении третьего столбца и четвертой строки. А сочетание символов gμν означало все 16 ячеек в меню (если речь идет о четырехмерном мире). Похожим образом обозначают ячейки в современных бухгалтерских таблицах.
Вернемся к уравнению, которое Эйнштейн вывел в 1915 году и которое, как мы уже знаем, в сжатом виде можно записать так:
Gμν = 8πTμνПрописная G в левой части – штука довольно сложная, и здесь незачем говорить о ней подробно. Отметим лишь, что в ее основе лежит как раз gμν – набор значений, которые вписываются в сетку 4×4 и показывают характеристики пространства и времени в определенной точке. Параметр Tμν – нечто похожее. В его основе лежит другая сетка 4×4, чьи значения описывают, что находится в этой точке пространства – времени: те смеси энергии и импульса, которые можно там обнаружить.
Но важнее всего то, что Эйнштейн каким-то удивительным образом осознал глубинную взаимосвязь между двумя частями этого уравнения. Незачем путешествовать по всем возможным точкам пространства – времени и затем измерять всю массу и энергию, которые там находятся, чтобы решить это уравнение. Это будет, мягко говоря, долгая и трудная задача (трудно даже выразить, насколько мы здесь смягчаем выражения). Благодаря гениальности Эйнштейна половина работы здесь уже проделана за нас. Определите особенности пространства – времени в левой части уравнения – и у вас уже будет немалый задел для того, чтобы выяснить, как в данной точке действуют масса и энергия. А можно начать справа, измерив величины, которые заполняют сетку, обозначаемую буквой Т, и затем – благодаря магии уравнения – вы тут же сможете отправиться в левую часть и начать описывать геометрическую конфигурацию пространства и времени в данной точке. Конечно же, если значения в левой части окажутся столь огромны, что они явно приведут к схлопыванию всей Вселенной, можно вычесть кое-что слева, чтобы все уравновешивалось без коллапса. Именно для этого Эйнштейн и ввел в 1917 году свою лямбду.
Решить уравнение непросто, ибо величины в таблицах по обе стороны знака равенства отнюдь не являются неизменными. Многие зависят от точки зрения. Так, если я воспринимаю какой-то объект как статичный (неподвижный), то вы, двигаясь относительно меня, не будете воспринимать этот же объект как статичный. А поскольку с вашей точки зрения он движется, то он будет – для вас – обладать кинетической энергией, и благодаря эквивалентности массы и энергии (вы ведь помните формулу E = mc²) вы будете ощущать гравитационное воздействие этого объекта сильнее, чем я.
Точно так же объект, наделенный массой, будет иметь одну длину при восприятии относительно неподвижным наблюдателем, но будет «сжиматься» при восприятии наблюдателем движущимся. Масса объекта при этом неизменна, но его объем уменьшается, а значит, растет плотность, и все это тоже надо учит