Объяснение всему этому может быть, по-видимому, только одно. Описанный ритуал – не что иное, как проверка ДНК на целостность сахарофосфатной цепи, своеобразный ОТК для ДНК. В самом деле, не следует забывать, что ДНК в клетке постоянно повреждается – облучением, химическими агентами, собственными нуклеазами, тепловым движением, в конце концов. В клетке есть целый арсенал средств, называемый репарирующей системой, для залечивания этих повреждений. В главе 3 мы рассказывали о том, как эта репарирующая система залечивает повреждения, наносимые ультрафиолетовыми лучами. Репарирующая система располагает множеством ферментов. Одни, нуклеазы, рвут цепь ДНК вблизи поврежденного нуклеотида. Другие ферменты расширяют брешь, удаляя поврежденное звено. Но генетическая информация при этом сохраняется, ведь есть вторая, комплементарная цепь, по которой ДНК-полимераза I вновь наращивает удаленную часть цепи ДНК.
Итак, в клетке постоянно залечиваются раны, наносимые молекуле ДНК, причем сплошь и рядом приходится прибегать к хирургическому вмешательству – разрывать одну из цепей двойной спирали. Что произойдет, если одновременно с ремонтом начнется репликация? Дойдя до разрыва цепи, ДНК-полимераза, ведущая репликацию, остановится: не сможет идти ни тот, ни другой процесс. Это катастрофа. Значит, репликацию следует начинать, только до конца убедившись, что ремонт завершен, а судить об этом можно по тому, что обе цепи ДНК целы. Но как это проверить? Пустить какой-нибудь белок вдоль ДНК, чтобы он ее прощупывал? Но на ДНК могут сидеть другие белки, которые не пропустят «ощупывающий» белок, и потом этот контроль очень долог. Где гарантия, что, пока будет проверяться целостность цепи звено за звеном, не произойдет новое повреждение? Нет, такой путь не годится.
И вот тут-то на помощь приходит сверхспирализация. Ведь она возможна только в той ДНК, в которой обе цепи на всем протяжении целы. А убедиться в наличии сверхспирали очень просто – в сверхспиральной ДНК гораздо легче развести две комплементарные цепочки, т. е. раскрыть участок двойной спирали. Раскрытие подобно действию расплетающего белка – оно снимает напряжение в отрицательно сверхспирализованной ДНК. Итак, белку, которому поручен контроль, следует связаться с нужным участком ДНК (он узнает его по определенной последовательности нуклеотидов) и попробовать развести в этом месте комплементарные цепи. Если получилось, то с этого места быстро-быстро начинается репликация. Если развести цепи не удалось, то придется подождать – ДНК еще не готова к воспроизведению.
Не правда ли, очень похоже на то, как мы проверяем исправность электрического шнура? Мы не прощупываем его по всей длине, а просто пропускаем ток. Если ток проходит – все в порядке, если нет – ищем неисправность. Найдя дефект и устранив его, мы вновь проверяем прохождение тока – а вдруг есть еще разрыв? Во всяком случае без такой проверки никто не станет прилаживать шнур. Но ДНК – не проводник, по ней ток не течет, так что пришлось клетке изобрести свой, надо признать, весьма остроумный тестер.
Но сверхспирализация нужна не только для начала репликации. Чтобы понять связь между сверхспирализацией и транскрипцией, проделайте следующий опыт. Подойдите к окну и закрутите двойной шнур от штор по часовой стрелке, пока не получится двойная спираль. Затем вставьте карандаш или авторучку между двумя цепями и начните его двигать вдоль двойной спирали без вращения. Тем самым вы смоделируете процесс транскрипции: карандаш моделирует РНК-полимеразу, а двойной шнур – ДНК. Из такого эксперимента станет ясно, что по мере того, как РНК-полимераза ползет по ДНК, она должна перезакручивать двойную спираль впереди себя и раскручивать ее за собой. Иными словами, ДНК становится положительно сверхспирализованной впереди РНК-полимеразы и отрицательно сверхспирализованной позади нее. Уонг с сотрудниками из Гарварда убедительно доказал, что такие волны сверхспирализации действительно имеют место и в прокариотических, и в эукариотических клетках.
Если вы продолжите опыт со шнуром и карандашом, то вскоре убедитесь, что не сможете больше двигать карандаш, так сильно шнур перекручен впереди карандаша. Следовательно, приходится допустить, что либо молекула ДНК и РНК-полимераза могут вращаться относительно друг друга, либо клетка способна снимать как положительную, так и отрицательную сверхспирализацию. С одной стороны, трудно ожидать, что очень длинная молекула ДНК и громоздкая транскрипционная машина, в случае прокариот еще нагруженная трансляционной машиной (рис. 15), будут вращаться вокруг друг друга. С другой стороны, топоизомеразы как раз способны менять сверхспирализацию. Основываясь на приведенных простых аргументах, Лерой Лю и Джэймс Уонг выдвинули в 1987 году концепцию волн сверхспирализации. Но как же обнаружить эти волны? Ведь при выделении ДНК из клетки память о волнах сверхспирализации теряется, поскольку волна не меняет величину Lk ДНК.
Хотя Уонг с сотрудниками не смог непосредственно наблюдать волны сверхспирализации в клетке, они сумели убедительно доказать реальность этих волн путем выключения различных топоизомераз. Наиболее убедительным было наблюдение положительной сверхспирализации плазмидной ДНК в клетках E. Coli, в которых выключена ДНК-гираза. Объяснение этого замечательного факта состоит в том, что в этом случае топоизомераза I продолжает снимать отрицательные сверхвитки, в то время как происходит накопление положительных сверхвитков, которые в норме снимаются ДНК-гиразой.
Опыты Уонга заставили пересмотреть вопрос о биологической роли сверхспирализации. В самом деле, до этих опытов считалось, что ДНК-гираза существует в E. Coli, чтобы создавать отрицательную сверхспирализацию. Совместно с топоизомеразой I, действующей в противоположном направлении, они поддерживают некую «естественную» или, как говорят биологи, нативную отрицательную сверхспирализацию в клетке. Считалось даже, что путем изменения значения сверхспирализации может грубо регулироваться экспрессия генов.
Опыты Уонга перевернули все эти представления. Оказывается, ДНК-гираза в клетке выполняет работу по снятию положительных сверхвитков, а вовсе не по созданию отрицательной сверхспирализации. Понятие нативной сверхспирализации потеряло всякий смысл, так как локальная сверхспирализация может оказаться сильно положительной, сильно отрицательной или вообще нулевой в зависимости от положения промоторов, от соотношения между скоростью перемещения РНК-полимеразы вдоль ДНК и эффективностью работы топоизомераз по снятию сверхвитков, создаваемых движением РНК-полимеразы.
Физики и математики за работой
Конечно, чтобы понять как следует, в чем состоит роль сверхспирализации, необходимо всесторонне изучить не только ее влияние на биологические функции ДНК, но и на физическую структуру молекулы. За дело взялись физики. Однако сразу же возникли серьезные проблемы. Разные физические методы, с помощью которых пытались измерить величину сверхспирализации, давали разные результаты.
Как-то в начале 1970-х годов Джером Виноград, открывший явление сверхспирализации и работавший в Калтехе (так называют сокращенно Калифорнийский технологический институт), встретил математика Брока Фуллера, также из Калтеха, и попросил его помочь разобраться в проблеме кольцевых ДНК, поскольку сам он к тому времени совершенно запутался. Фуллер живо заинтересовался рассказом Винограда. Он почувствовал, что здесь могут оказаться полезными некоторые результаты, как раз привлекшие внимание математиков в то время. Они касались неожиданной связи между топологией и дифференциальной геометрией.
Эти две области математики изучают одинаковые объекты, кривые и поверхности, но с абсолютно разных точек зрения. Дифференциальная геометрия исследует локальные свойства поверхности, такие как кривизна, кручение. Топологию, напротив, совершенно не интересуют эти характеристики, для нее имеет значение, например, есть ли в поверхности дырки (но не важно, какой формы эти дырки), сколько их и т. д. Так, мраморную статую может изучать и геолог, и искусствовед. Но геолога интересует только камень, а искусствоведа – форма, приданная камню скульптором. Вряд ли эти люди нашли бы между собой общий язык, подходя к делу строго профессионально.
Столь же неожиданной оказалась для математиков связь между дифференциально-геометрическими и топологическими характеристиками одного класса поверхностей – двусторонних полос. Знаменитый лист Мёбиуса – частный случай полосы. Чтобы смастерить лист Мёбиуса, возьмите полоску бумаги, перекрутите ее на 180° вдоль длинной оси и склейте концы полоски. Затем начните с любой точки и ведите карандашом линию, параллельную краям полосы. Вскоре вы увидите, что вернулись к исходной точке, ни разу не оторвав карандаша от листа. Это и есть замечательное, даже несколько загадочное свойство листа Мёбиуса – он имеет всего лишь одну сторону. Поэтому его называют односторонней полосой.
Теперь вырежьте еще полоску из бумаги и вновь склейте концы. Но при этом перекручивайте их не на 180°, как при склейке листа Мёбиуса, а на угол, равный т × 360°, где т – целое число. Вы всегда будете получать двусторонние полосы. У двусторонней полосы два края представляют собой замкнутые кривые, причем они могут быть незацепленными или образовывать зацепление с каким-то значением порядка зацепления Lk, причем очевидно, что Lk = т.
Фуллер быстро сообразил, что с точки зрения математики молекула зкДНК представляет собой двустороннюю полосу. Краями полосы следует считать сахарофосфатные цепи молекулы. То, что зкДНК может быть только двусторонней полосой, – факт чисто химический, связанный с существованием направления в каждой из цепочек ДНК, причем комплементарные цепи направлены навстречу друг другу, т. е. антипараллельны (о чем мы поговорим подробно в конце этой главы). Легко убедиться, что если из такой молекулы попытаться склеить лист Мёбиуса, то ничего не получится – концы комплементарных цепей подойдут друг к другу в положении «голова к голове» и «хвост к хвосту», т. е. не смогут соединиться.