{58}. Поскольку поры довольно прямолинейны и тянутся вертикально от внутренней до внешней стороны скорлупы, их длина обычно сходна с толщиной скорлупы. У большинства видов поры – простые одиночные трубочки, но у страусов, чья скорлупа яиц очень толстая, поры иногда могут иметь два или три ответвления. Яйцо крапивника, весящее около одного грамма, имеет каналы пор диаметром около 3 мкм. На другом конце шкалы стоят поры в яйце эму, весящем 800 г – они достигают ширины 13 мкм{59}.
В целом число и размеры пор определяют, в каком количестве и насколько быстро кислород проникает в яйцо. Помимо удаления нежелательного углекислого газа, поры позволяют развивающемуся эмбриону избавляться от водяного пара. Во время роста эмбрион выделяет воду, называемую метаболической и образующуюся в результате метаболизма пищи. У нас происходит тот же самый процесс: мы выделяем метаболическую воду и избавляемся от ее части, по крайней мере в виде водяного пара, когда дышим. Различные виды пищи высвобождают разное количество метаболической воды: например, 100 г жира производят 110 г воды, 100 г крахмала создают 55 г воды, а 100 г белка высвобождают 41 г воды.
Если представление о метаболической воде кажется трудным для понимания, позвольте мне рассказать вам о зебровой амадине, крохотной птичке из Австралии, которая великолепно приспособлена к выживанию в очень засушливых условиях пустыни, но более знакома в наши дни как клеточная птица. В неволе и при кормлении только стандартными сухими семенами для птиц, зебровые амадины способны выжить без воды в течение как минимум восемнадцати месяцев{60}. Они могут делать это, используя метаболическую воду, выделяемую, когда они переваривают сухие семена. Именно этот физиологический подвиг позволяет зебровой амадине выживать в самых засушливых пустынях Австралии. Это частично объясняет их появление в Европе в качестве клеточных птиц в начале 1800-х гг. – возможно, потому что они смогли пережить шестимесячный морской путь до Европы, часто, как мне думается, без свободного доступа к воде.
В процессе роста развивающийся внутри яйца птенец выделяет большое количество метаболической воды из богатого жиром желтка. Эта вода должна быть удалена, иначе эмбрион утонул бы, если так можно выразиться, в собственных соках, и он справляется с проблемой, позволяя воде диффундировать в виде водяного пара сквозь поры в скорлупе. В результате в ходе инкубации яйца теряют вес. Замечательно, что, несмотря на огромную изменчивость между видами птиц по размеру яиц (от 0,3 г до 9 кг по весу), по продолжительности инкубации (10–80 дней) и относительному размеру желтка (от 14 до 67 %), потеря воды за время между откладкой яйца и вылуплением птенца всегда составляет примерно 15 % от исходного веса яйца. Водяной пар, улетучившийся во время инкубации, гарантирует, что относительное количество воды в яйце у птенца во время проклева останется тем же самым, каким было, когда яйцо было отложено. Иными словами, посредством естественного отбора состав свежеотложенного яйца эволюционировал, чтобы гарантировать правильное состояние тканей только что вылупившегося птенца в отношении содержания в них воды. За счет естественного отбора была достигнута такая суммарная эффективность движения газов через поры, что птенец перед вылуплением избавляется от всей метаболической воды, вырабатываемой им в ходе развития. Одно из последствий этой потери водяного пара – пространство в яйце, составляющее примерно 15 % от его объема, которое превращается в воздушную камеру на тупом конце яйца и снабжает птенца – как мы увидим в главе 8 – необходимым количеством воздуха прямо перед тем, как он выклюнется{61}.
Воздушная камера формируется между внутренней и наружной подскорлуповыми оболочками, когда яйцо откладывается. Когда оно охлаждается, а его содержимое сжимается после того, как яйцо покидает тело самки, воздух втягивается в него сквозь поры и накапливается в линзовидной полости на его тупом конце. Если вы поместите куриное яйцо против источника яркого света, то сможете увидеть воздушную камеру.
Когда вы чистите сваренное вкрутую яйцо, присутствие воздушной камеры выдает уплощенная поверхность белка на его тупом конце, где воздушная камера прижималась к белку. В 1600-х гг. Уильям Гарвей был первым, кто задумался о роли воздушной камеры, отвергая широко распространенное в те времена поверье о том, что ее положение в яйце указывает на пол птенца. По мере развития воздушное пространство увеличивается в размере, и благодаря этому вы можете оценить возраст яйца или стадию его развития, глядя на то, как оно плавает в воде: очень свежее яйцо, в котором фактически нет никакой воздушной полости, тонет; более старые яйца плавают.
Поскольку газы ведут себя под давлением иначе, мы могли бы ожидать, что размер и количество пор (эффективная площадь пор) будут отличаться у птиц, размножающихся на различной высоте над уровнем моря. А именно, на больших высотах потеря газов будет меньше. И это подтверждается сравнением птиц, размножающихся на различных высотах над уровнем моря: у видов, обитающих на больших высотах, в скорлупе яиц пор меньше и сами они более узкие. Это говорит о способности птиц веками приспосабливаться к местным условиям. Иными словами, птицы, размножающиеся на различных высотах над уровнем моря, в ходе эволюции приобрели различную эффективную площадь пор, подобному тому, как у зверей, размножающихся ближе к полюсам, поверхность ушей и других выступающих частей тела будет иметь меньшую площадь. Однако тот факт, что одинаковые закономерности в эффективности площади пор наблюдались у домашних кур, содержащихся на различной высоте над уровнем моря, говорит о том, что возможность адаптации к местным условиям здесь маловероятна. Серьезной проверкой этого было исследование яиц от одних и тех же особей – в данном случае опять-таки кур, содержавшихся на малых и больших высотах. Когда такое исследование провели, оказалось, что эти птицы способны определять разницу в высоте над уровнем моря и обладают физиологической гибкостью формировать яичную скорлупу, поры в которой соответствующим образом различаются по размерам и количеству. Это открытие, сделанное одним из величайших пионеров в области биологии яйца и яичной скорлупы, Германом Раном и его коллегами в 1970-е гг., позволило выявить одно из самых замечательных приспособлений среди всех наблюдаемых у птиц{62}. Просто задумайтесь над возможными механизмами, благодаря которым это происходит: птица должна быть способна определять атмосферное давление и каким-то образом передавать сигнал через мозг к скорлуповой железе, где формируется скорлупа, чтобы создать яичную скорлупу с соответствующим количеством пор. Просто невероятно!
Поры позволяют эмбрионам, близким к вылуплению, воспринимать сигналы из внешнего мира – по крайней мере, его звуки и запахи. Эксперименты с курами показывают, что после того, как эмбрион продырявил клювом стенку (глава 8), но еще до того, как разрушена сама скорлупа, цыпленок может распознавать различные запахи. Эмбрионы, подвергнутые на этой стадии воздействию запаха некоторых веществ, после вылупления из яйца оказывали предпочтение ассоциирующимся с этим запахом видам пищи{63}. На мой взгляд, это напоминает слегка нереалистичный эксперимент с довольно странной интерпретацией. Сложно представить себе насиживающую родительскую особь, от которой исходит достаточно ощутимый запах пищи, которую она потребляла. Более вероятно, что эмбрион запоминает запах насиживающего родителя (или обоих родителей) и позднее использует его наряду с некоторыми другими подсказками, в том числе звуковыми, чтобы держаться поближе к взрослым, которые будут о нем заботиться. Я могу представить себе, как это происходит у кайр, хотя пока это предположение остается непроверенным.
А сейчас мы переходим от обзора строения скорлупы к рассмотрению причин, определяющих форму птичьих яиц.
3Форма яиц
Также и форма яйца имеет свое определенное значение[18].
Куда ни бросишь взгляд – всюду яйца: голубые, зеленые, ржаво-рыжие, белые, но главным образом нейтрального цвета хаки. Почти все они целы, но некоторые разбиты, а их оранжево-желтый желток и окровавленные недоразвитые эмбрионы распластались по камням… Есть яйца, лежащие кучками в углах, яйца в лужах, полных нечистот, и яйца, забившиеся в щели. Сотни, а возможно, тысячи яиц кайр укатились из мест, где они были отложены, и теперь лежат, холодные и брошенные.
Я нахожусь в отдаленной группе островов, населенных морскими птицами и известных как острова Ганнет у побережья Лабрадора в Канаде. В 1980-е гг. мне посчастливилось провести здесь три лета, изучая кайр и других морских птиц. К своему удивлению, на этот раз – а сейчас 1992 год – я обнаружил, что несколько песцов обосновались на островах и сеют опустошение, убивая тупиков и спугивая кайр и гагарок в их колониях. Местные жители на материке рассказывают мне, что зимой песцы не представляют редкости здесь, но весной, когда морской лед отступает, обычно уходят обратно на север. В этом году несколько песцов не успели за льдом и оказались пойманными в ловушку на островах на все лето – хотя еды у них более чем вдоволь.
Архипелаг Ганнет включает шесть мелких островков, пять из которых служат домом для десятков тысяч морских птиц: кайр (обоих видов), тупиков, гагарок, обыкновенных чистиков, моевок, глупышей и чаек. Тонкоклювые кайры гнездятся тесными группами на плоских скалах рядом с морем, потому что на этих низких островах почти нет утесов. Мы обнаружили песцов на двух из шести островов, но, что любопытно, не на том, где были разбиты яйца кайр. Я предположил, что песец побывал там, возможно, преодолев немногие десятки метров между островами, прыгая по плавающим льдинам. Я мог лишь представить себе панику, когда взрослые птицы бросались в разные