[149]. Суть метода проста: он рисовал животное на миллиметровке, а затем, изменяя масштаб согласно некоторым математическим формулам, демонстрировал превращение животного в родственное этому последнему. Миллиметровку с переменным масштабом можно представить себе листом резины. Нарисуем на ней животное, а потом растянем (или сожмем) ее. Томпсон, например, взял шесть видов крабов и нарисовал на миллиметровке один из них, Geryon. Затем «растянул» миллиметровку пятью способами и получил другие пять видов. Математические подробности нас сейчас не занимают, хотя они очень увлекательны. Но следует понять, что не так-то трудно сделать из одного краба другого. Сам Томпсон не слишком интересовался эволюцией, но нам-то легко представить, как должны были действовать генетические мутации, чтобы добиться таких результатов. Конечно, мы не будем считать Geryon или какой-то из пяти других видов предком остальных. Никто из них не был таковым, и дело не в этом. Суть достижения Томпсона — в демонстрации того, что как бы ни выглядел общий предок этих крабов, трансформация такого рода может превратить любого из них (как и общего предка) в любой другой.
Ракообразные. Рисунок немецкого зоолога Э. Геккеля
Эволюция никогда не происходила посредством превращения одной взрослой особи в другую. Вспомним, что любая взрослая особь начинает существование с эмбриона. Мутация проявляется в развитии эмбриона — как изменение скорости роста частей относительно друг друга. В главе 7 мы именно так интерпретировали эволюцию черепа человека. Следовательно, если мы нарисуем человеческий череп на «резиновой миллиметровке», то преобразованиями а-ля Томпсон сможем превратить его в череп близкого родственника, например шимпанзе, или (с большими искажениями) в череп павиана. Именно это продемонстрировал Томпсон. Заметьте, что начинать с человеческого черепа необязательно: он мог взять череп шимпанзе и получить череп человека. А еще лучше для книги по эволюции (каковой книга Томпсона не являлась) расположить на «резиновой миллиметровке» череп австралопитека и растянуть ее до черепа современного человека. Получилось бы ничуть не хуже, чем на приведенных рисунках, а с эволюционной точки зрения было бы куда осмысленней.
Трансформации панциря краба по Д. Томпсону
Трансформации черепа по Д. Томпсону
В начале этой главы мы познакомились с идеей гомологии на примере крыльев летучей мыши и человеческих рук. С некоторым насилием над языком я сформулировал это как совпадение скелетов при различии костей. Трансформации Томпсона позволяют сформулировать это точнее. Два органа — например, рука человека и крыло летучей мыши — гомологичны, если можно преобразованиями Томпсона получить из первого второй. Математики называют это отображение гомеоморфизмом[150].
Зоологи знали о гомологии еще до Дарвина и говорили, что, например, крыло мыши гомологично руке человека. Знай они математику лучше, они бы говорили: «гомеоморфно». После Дарвина, когда наличие у летучей мыши и человека общего предка перестало подвергаться сомнению, зоологи стали определять гомологичность в эволюционных терминах, считая гомологичными органы, унаследованные от общего предка. Термин «аналогичный» стали применять в отношении органов со сходными функциями, но без общего происхождения. Например, крыло мыши аналогично крылу насекомого и гомологично человеческой руке. Итак, если мы хотим применять гомологии как аргумент в пользу эволюционной теории, мы должны отказаться от эволюционного определения гомологии, чтобы не угодить в замкнутый круг. Поэтому нам будет пока удобнее пользоваться доэволюционным определением. Крыло мыши и рука человека гомеоморфны, поскольку одно можно получить из другого преобразованием Томпсона. Превратить таким способом крыло мыши в крыло насекомого не получится из-за отсутствия в последнем соответствующих деталей. Широко распространенные гомеоморфизмы, которые определены без помощи эволюции, пригодны для доказательства эволюции. Нетрудно показать, как эволюция могла превратить руку одного позвоночного в руку любого другого, изменяя скорость роста частей руки у эмбриона.
С того момента, когда в 1960-х, будучи студентом-старшекурсником, я познакомился с компьютерами, я задавался вопросом, что сделал бы Томпсон, если бы у него был компьютер. Вопрос стал актуален в 1980-х, с появлением доступных компьютеров с графическим дисплеем. Рисование на растяжимой подложке просто просилось на экран компьютера. Я предложил Оксфордскому университету подать заявку на грант, чтобы нанять программиста для реализации алгоритма Томпсона с удобным общедоступным интерфейсом. Мы получили деньги, и я нанял Уилла Аткинса, первоклассного программиста и биолога, который стал моим другом и советчиком. Когда он справился с широким репертуаром дисторсий Томпсона, ему уже не составляло труда научить этому программу искусственного отбора биоморфов, о которой я рассказывал в главе 2. «Игроку» предлагаются организмы, из которых он может выбрать один для «разведения». Как и прежде, процессом управляют гены, переходящие из поколения в поколение, однако теперь они управляют формой организма (растягивая или сжимая «резиновую миллиметровку», на которой он нарисован). Теоретически можно, начав с черепа австралопитека, добиться постепенного увеличения лобных долей и уменьшения длины морды по мере приближения к современному человеку. На деле же это оказалось довольно трудной задачей.
Одна из причин, на мой взгляд, по-прежнему заключается в том, что преобразование Томпсона преображает одну взрослую форму в другую. В главе 8 я упоминал, что генетически обусловленная эволюция работает иначе. У каждого животного есть история развития. Путь от эмбриона до взрослого организма лежит через непропорциональную скорость роста отдельных частей тела. Эволюция — это не управляемое генами преобразование одного взрослого организма в другой, а управляемое генами изменение программы развития. Сэр Джулиан Хаксли (правнук Томаса и брат Олдоса[151]) осознал это, когда, вскоре после выхода первого издания книги Томпсона, попытался приспособить его метод для изучения превращения эмбриона на разных стадиях развития. Здесь мы на время, до последней главы книги, оставим метод Томпсона.
Сравнительная анатомия, как я отмечал, свидетельствует в пользу эволюционной теории даже убедительнее ископаемых остатков. Этой точки зрения придерживался и Дарвин, высказавший ее в конце главы «Взаимное родство организмов» «Происхождения видов»:
Наконец, различные группы фактов, рассмотренные в этой главе, по-моему, столь ясно указывают, что бесчисленные виды, роды и семейства, населяющие земной шар, произошли каждый в пределах своего класса или группы от общих предков и затем модифицированы в процессе наследования, что я без колебаний принял бы этот взгляд, если бы даже он не был подкреплен другими фактами или аргументами[152].
Молекулярное сопоставление
Дарвин, конечно, не мог знать, что сравнительные доказательства станут еще более убедительными, если дополнить доступные ему анатомические сравнения молекулярной генетикой.
Так же, как скелет позвоночных остается неизменным при изменении отдельных костей, а экзоскелет всех ракообразных одинаков независимо от формы составляющих его «трубок», код ДНК одинаков у всех живых существ — меняются только отдельные гены. Это поразительный факт, яснее всех других демонстрирующий, что все живые существа происходят от общего предка. Не только генетический код, но, как мы видели в главе 8, вся генно-белковая система, поддерживающая жизнь, одинакова у всех животных, растений, грибов, бактерий, архей и вирусов. Меняется лишь закодированная информация, сам код остается неизменным. И если посмотреть на то, что закодировано, на последовательности генов разных существ, мы снова увидим генеалогическое древо, которое получалось при сравнении скелета позвоночных, скелетов ракообразных, да даже необязательно скелета — годятся все морфологические признаки.
Допустим, мы захотели узнать, насколько близки друг другу два вида, например, ежи и обезьяны. Идеальное решение проблемы — взять полные генетические коды этих видов и сравнить их построчно и побуквенно, как библеист сравнивал бы два рукописных варианта Книги пророка Исайи. Но это дорого и отнимет много времени. Работа над проектом «Геном человека» шла десять лет, сотни человеко-лет труда. Хотя сейчас это можно сделать намного быстрее, проект «Геном ежа» все равно будет недешевым и не слишком быстро осуществимым.
«Геном человека» — один из проектов, которые, подобно высадке на Луне или постройке Большого адронного коллайдера, вызывают у меня чувство гордости за человечество. Я рад и тому, что недавно закончены секвенирование генома шимпанзе и аналогичные проекты для других видов. Если мы и дальше будем двигаться вперед такими темпами (см. обсуждение закона Ходжкина ниже), довольно скоро сравнительный анализ и оценка родства на основе полной генетической информации станут экономически доступными. Пока же наши возможности ограничены сравнительным анализом частей генома, но и этот метод дает отличные результаты.
Для сравнения достаточно выбрать у двух видов несколько генов (или белков, строение которых известно непосредственно из генетических последовательностей) и сравнить их. Мы вскоре к этому вернемся. Однако давно известны и другие, более грубые, методы автоматизированного сравнения, которые на удивление хорошо работают. Один из них основан на использовании иммунной системы кроликов (подойдет любое другое животное, но кролики отлично справляются). Защищаясь от патогенов, иммунная система кроликов вырабатывает антитела к любому чужеродному белку[153]