икто в первой группе не сказал, что шарик будет падать вперед, однако во второй группе большинство детей выбрали именно такую траекторию. Расхождение между перцептивными и концептуальными ожиданиями о движении проявляется уже в двухлетнем возрасте. Если малышам показать анимацию шарика, который скатывается со стола вниз по прямой, а не по параболе, они удивляются: смотрят значительно дольше[139]. Однако дети этого возраста ищут упавший со стола мяч прямо под столом, хотя удивились бы, если бы увидели, что он и правда туда падает.
Поскольку двухлетние дети делают прогнозы на основе импульса, эта теория движения складывается на довольно раннем этапе жизни, задолго до того, как человек вообще узнает слова «движение» и «сила». А тот факт, что двухлетние делают подобные предсказания, несмотря на способность узнавать неестественные движения на анимации, подразумевает, что концептуальные ожидания о движении отделяются от перцептивных с самого начала.
Расхождения очень ярко проявились в исследованиях двигательной памяти[140]. В серии экспериментов участникам студенческого возраста показывали, как шар вылетает из искривленной трубы по прямой, а затем просили нарисовать, что они только что видели. В большинстве случаев воспоминания подводили: на рисунках шар летел из трубы по кривой. В другом исследовании участники видели, как в воздух с одинаковой скоростью запускали два шара — большой и маленький. Шары поднимались и опускались синхронно, но участники утверждали, что маленький мяч поднимался быстрее большого, как будто на него меньше влияла гравитация. Эти же работы показали: чем дольше опыт сохраняется в памяти, тем больше появляется таких иллюзий. Со временем концептуальные ожидания всё больше перекрывают перцептивные. Мы можем признавать истинность законов Ньютона, но признание длится не дольше, чем взгляд.
Теория импульса складывается очень рано и сохраняется, несмотря на способность человека точно воспринимать движение в реальном времени. Можно ли как-то вырваться из ее оков? Придумали ли педагоги способ обучать ньютоновским представлениям о движении? В большинстве случаев при преподавании законов Ньютона используется решение задач, однако это не помогает учащимся изменить устоявшиеся взгляды. Это отчетливо проявилось в исследовании студентов, которые в течение двух лет занимались физикой по четыре с половиной часа в неделю[141]. За это время они решили сотни, если не тысячи упражнений. Чтобы определить, дало ли это какой-то эффект, исследователи провели тест на концептуальное понимание движения, призванный отличить рассуждения, основанные на импульсе и ньютоновских принципах, и сопоставили результаты с числом задач по физике. Результаты не воодушевляли. Студенты, решившие три тысячи задач, обнаруживали основанные на импульсе рассуждения с той же вероятностью, что и студенты, решившие всего триста.
Решение тысяч задач, может быть, не улучшает понимание движения, однако дает явный положительный эффект: улучшает сами навыки решения физических задач. Студент учится узнавать, какие абстрактные формулы применить в конкретной ситуации. От него не требуют раздумывать над смыслом этих формул. Достаточно подставить правильные числа в правильные уравнения, и математика выдаст результат.
Если задачники не помогают улучшить понимание движения, то что же помогает? Многие исследователи, изучавшие преподавание физики, предлагали обучение в микромире — виртуальной среде, где физические законы усваиваются благодаря симуляции взаимодействий и экспериментов[142]. Такой подход имеет сразу несколько привлекательных черт. С его помощью можно проиллюстрировать любые законы физики, не только ньютоновские. Можно имитировать физические взаимодействия, которые не получится показать в классной комнате. Можно измерить любые физические параметры, не ограничиваясь секундомером и линейкой. По своему образовательному потенциалу микромиры далеко превосходят старую скучную реальность.
Возможно, виртуальные миры привлекательны. Но эффективны ли они? В одной работе этот вопрос был рассмотрен на примере популярной компьютерной игры Enigmo, в которой игроку нужно направлять падающие капли из одной части микромира в другую, манипулируя местом, куда они падают[143]. Капли подчиняются ньютоновским принципам, в том числе, вопреки стойкому неверному представлению, следуют по параболической траектории. В исследовании участвовали ученики средней школы. Одна половина шесть часов на протяжении месяца играла в Enigmo, а другая — в стратегию Railroad Tycoon, где никаких физических принципов нет. В конце обе группы прошли получасовое занятие, посвященное законам Ньютона. Концептуальное понимание движения измеряли трижды: до и после компьютерных игр и после занятия.
Рис. 5.4. Компьютерные игры, построенные на законах Ньютона, — например, эта, где надо направлять капельки воды по параболическим траекториям, — мало помогают ученикам узнавать и применять эти принципы за пределами игровой среды
Как и предполагалось, у детей, игравших в Enigmo, результаты ко второму тесту улучшились, но всего на 5%. В то же время занятия физикой повысили результаты на целых 20% и принесли такую же пользу ученикам, игравшим в Railroad Tycoon. Другими словами, тридцать минут занятий оказались в несколько раз эффективнее, чем шестичасовое погружение в микромир, действующий согласно изучаемым принципам. Аналогичные результаты наблюдались и при использовании других микромиров[144]. В лучшем случае они обеспечивали те же результаты, что и стандартное обучение, а в худшем — оказывались пустой тратой времени, давая знания, которые не применялись за пределами игры.
То, что знания, приобретенные в микромирах, не применяются в реальном мире, имеет много плюсов. Дело в том, что популярные компьютерные игры направлены прежде всего на развлечение и редко иллюстрируют законы Ньютона. Возьмите Super Mario Brothers для Nintendo. Марио и его братец Луиджи не сохраняют горизонтальной скорости. Когда они подпрыгивают вертикально вверх, платформа выезжает у них из-под ног, а предметы с движущихся платформ падают прямо вниз. Какие-то объекты подвержены действию гравитации, какие-то — нет. Гравитация вообще работает в игре непоследовательно, позволяя Марио прыгать в два раза выше своего роста, а затем падать в восемь раз быстрее, чем надо, учитывая скорость подъема[145]. Конечно, игроку вряд ли придет в голову, что можно прыгнуть выше собственного роста только потому, что у Марио это получается: это знание отправляется в карантин и используется только в данной игровой вселенной. Ученики, играющие в Enigmo, точно так же отправляют в карантин знания законов Ньютона, которые приобрели в ходе игры.
Возможно, микромиры — неэффективный инструмент обучения, потому что виртуальный опыт слишком оторван от реальности. Многие педагоги уверены, что косвенный опыт — компьютерные игры, документальные фильмы, лекции, учебники — бледнеет по сравнению со знаниями, полученными прямо из жизни. Они считают, что осязаемый, подлинный опыт критически важен для осмысления и долгосрочного удержания знаний. Это мнение, однако, не подтверждается исследованиями. Несколько работ показало, что прямой опыт не лучше косвенного (например, инструктажа) в обучении абстрактным идеям, в частности законам Ньютона. Проблема именно в том, что для усвоения этот опыт нужно вывести на абстрактный уровень[146].
Мэгги Ренкен, занимавшаяся вопросами обучения, провела исследование, которое прекрасно демонстрирует неэффективность живого опыта[147]. Ее группа сравнивала прямой и косвенный подходы к преподаванию принципа, что предметы падают с одинаковой скоростью независимо от массы. Участников — учеников средних классов — разделили на две группы. Одна группа провела серию экспериментов с шарами и уклонами: ученики меняли массу катящегося вниз шара и наклон, чтобы определить, какие переменные влияют на скорость. Другая группа читала об этих экспериментах — методах, результатах и следствиях, — но сама их не ставила. В результате лишь у второй группы обнаружилось понимание, что предметы падают с той же скоростью независимо от массы. В отличие от объяснений, живое наблюдение за шарами различной массы, движущимися по уклону с той же скоростью, не повлияло на уже имеющееся убеждение, что большие предметы должны падать быстрее, чем маленькие. Прошедшие же обучение ученики помнили и могли применить усвоенный принцип не только в день обучения, но и спустя три месяца.
На первый взгляд эти результаты удивляют. Почему ученики оказались восприимчивее к информации, полученной из вторых рук, а не к собственным наблюдениям? Однако если подумать, так и должно быть. Если бы живой контакт был достаточен для формулировки физических принципов, все осваивали бы их самостоятельно еще до школы, но когнитивные искажения — например, представление, что движение отличается от состояния покоя или что движение подразумевает силу, — заставляют нас не обращать внимания на эти принципы в повседневной жизни, даже если эксперимент поставлен руками. Если вспомнить об истории науки, нелепо думать, что ученики после получасового эксперимента сформулируют законы движения, для открытия которых физикам потребовались сотни лет наблюдений и опытов.
Тем не менее живое взаимодействие с физическими объектами небесполезно и очень способствует усвоению материала при условии правильного обучения. Один из таких методов был разработан ученым Джоном Клементом[148]