Сборник задач по математике с решениями для поступающих в вузы — страница 16 из 76

1/6 работы (обратите внимание: 1/6 всей работы, а не 45 или 27 деталей) была уже выполнена.

Из условия следует, что рабочие работают по-разному, другими словами, они изготовляют разное число деталей за одно и то же время. Поэтому нужно ввести в рассмотрение производительность каждого из них. Однако через x, у и z мы обозначим не число деталей, изготовляемых в час первым, вторым и третьим рабочими соответственно, а ту часть всей работы, которую каждый из них выполняет за это время.

После всего сказанного должно быть очевидным, что мы легко перепишем условие задачи в виде системы уравнений, если введем в рассмотрение еще три неизвестные: t1, t2, t3 — время, затраченное соответственно первым, вторым и третьим рабочими. Так как каждый из них сделал за это время треть всей работы, то

t1x = t2у = t3z = ⅓. (1)

Мы получили три уравнения (их можно было написать в виде t1x = ⅓, t2у = ⅓, t3z = ⅓. K ним нередко добавляют четвертое:

t1x + t2у + t2z = 1,

которое должно отражать то обстоятельство, что в итоге вся работа была выполнена. Однако это уравнение не содержит никакой самостоятельной информации: оно является следствием первых трех и получается в результате их сложения. Поэтому последнее уравнение, хотя и верно составлено, но бесполезно для решения задачи.

Так как первый и второй рабочие вместе выполняют всю работу за 1/x + y ч, а третьему на это потребуется 1/z ч, то еще одно условие задачи можно записать так:

1/x + y  + 9 = 1/z.     (2)

Составим теперь уравнение, отражающее тот факт, что третий рабочий приступил к работе, когда ее 1/6 была выполнена. Другими словами, когда первый проработал t1t3 ч, а второй t2t3 ч, они сделали 1/6 всей работы:

x(t1t3) + у(t2t3) = 1/6.    (3)

Добавляя к этим пяти уравнениям шестое:

t2t3 = 2,      (4)

мы можем приступить к решению полученной системы уравнений.

Решая систему уравнений, как правило, следует держать в поле зрения два обстоятельства. Во-первых, систему уравнений нужно воспринимать в целом, так, как вы воспринимали бы ее, решая вне связи с задачей. Это позволит найти более рациональный ключ к ее решению. Во-вторых, нельзя упустить из виду те неизвестные (или комбинации неизвестных), которые позволят ответить на вопрос задачи. Благодаря этому можно обойтись без излишних вычислений.

В нашем примере второе обстоятельство должно побудить нас использовать уравнение (4) для упрощения уравнения (3), в результате чего из (3) будет исключено неизвестное t2, которое нас не интересует. Однако после замены t2t3 на 2 уравнение (3) потеряет симметрию относительно t1x и t2у, что затруднит использование уравнений (1). Если же в уравнении (3) раскрыть скобки и вспомнить, что xt1 = ⅓ и уt2 = ⅓, то получим уравнение

t3(x + у) = ½.

С его помощью можно выразить x + у через t3, а из уравнения zt3 = ⅓ можно выразить через t3 и неизвестное z. Подставляя эти выражения в (2), получим

2t3 + 9 = 3t3,

откуда

t3 = 9.

Дальнейшее решение системы не представляет труда. Находим последовательно: t2 = 11, z = 1/27, у = 1/33. Из уравнения (2) определяем x = 5/198 и t1 = 1/3x= 66/5. Итак, первый рабочий работал 13 ч 12 мин.

Эту же задачу можно было бы решить с помощью меньшего числа неизвестных, если ввести в рассмотрение, помимо величин x, у и z, имеющих прежний смысл, величину t, обозначающую время, в течение которого рабочие работали вместе, т. е. время работы третьего рабочего. Это привело бы нас к системе:

t(x + у + z) = 5/6     (1′)

(за время t рабочие сделали вместе 5/6  всей работы),

tz = (t + 2)у = ⅓     (2′)

(за время t третий рабочий сделал треть всей работы, а второму на это потребовалось на 2 ч больше),

1/x + y + 9 = 1/z     (3′)

(первый и второй рабочие выполняют всю работу на 9 ч быстрее, чем третий, работая один).

Поскольку tz = ⅓, то из (1′) найдем 

x + y = 1/2t

Вместе с z = 1/3t подставим в (3′). Получим

t = 9.

Как и прежде, найдем последовательно z, у и x. На вопрос задачи можно ответить, вспомнив, что первый рабочий работал столько, чтобы успеть сделать ⅓ всей работы, т. е. 1/3x.

Конечно, второе решение выглядит более изящно, чем первое. Однако признать его лучшим трудно, поскольку за те простые уравнения, от которых мы отказались, пришлось уплатить некоторым усложнением логики.

А теперь приведем арифметическое решение этой задачи — решение, в котором удается обойтись вообще без составления уравнений.

Так как рабочие совместно выполнили 1 − 1/6 = 5/6 всей работы, причем третий сделал ⅓, то на долю первого и второго осталось 5/6 − ⅓ = ½ всей работы. Следовательно, если бы первый и второй успели выполнить всю работу, то третий за то же самое время сделал бы ⅔; ему останется 1 − ⅔ = ⅓ , на что ему потребовалось бы в силу последнего условия задачи 9 ч.

Так как каждый рабочий сделал одинаковое количество деталей, т. е. ⅓ всей работы, то третий работал ровно 9 ч. Тогда второй работал 9 + 2 = 11 ч. Так как он тоже сделал ⅓ всей работы, то его производительность равна 1/33 всей работы в час. Мы знаем, что первый и второй тратят на ½ всей работы столько же, сколько третий на ⅓, т. е. 9 ч. Второй сделает за это время 33 · 9 = 3/11 всей работы. Следовательно, на долю первого приходится ½ − 3/11 = 5/22. Его производительность 5/22 : 9 = 5/198 в час. Свою треть работы он выполнил за ⅓ : 5/198 = 131/5 (ч), т. е. за 13 ч 12 мин.

Хотя решение выглядит намного красивее, чем первые два, его тоже трудно назвать существенно лучшим. Взгляните внимательно на уравнения второго решения, и вы заметите, что третье решение получено почти «дословным» пересказом этих уравнений.

Таким образом, на пути к решению задачи вас не должно останавливать большое число неизвестных, которые, по вашему мнению, следует ввести.

Однако старайтесь не вводить неизвестные, размерность которых не встречается в условии и не может быть получена как комбинация элементов условия. Введение таких неизвестных может усложнить задачу.

Вот простой пример.

Пример 2. Расстояние между двумя пунктами A и В пароход проходит по течению реки на а ч быстрее, чем то же расстояние в стоячей воде, и на b ч быстрее, чем против течения (b>а> 0). За какое время пароход проходит расстояние от A до В по течению?

Если ввести в рассмотрение неизвестные: v — скорость парохода в стоячей воде, w — скорость течения реки, x — расстояние, то получим систему двух уравнений с тремя неизвестными:

Найти из этой системы величину x/v + w можно, если сделать следующие преобразования:

и обозначить v/x = у, w/x = z. Мы придем к системе относительно у и z, решив которую, вычислим 1/y + z.

Однако такую систему можно было получить сразу, если бы мы не ввели в качестве неизвестного x пройденное пароходом расстояние.

В условии задачи не было чисел, выраженных в километрах, однако расстояние между пунктами являлось существенным связующим звеном. Это означает, что мы должны были принять его за единицу, а скорости v и w выражать в частях расстояния, пройденных за один час. В результате мы пришли бы к системе

которую не пришлось бы преобразовывать.


Разберем еще одну задачу, на примере которой видно, как решаются задачи на движение.

Пример 3. Из пункта С в пункт D выехал товарный поезд. Через 5 ч 5 мин навстречу ему из пункта D выехал пассажирский поезд. Они встретились в каком-то пункте А. После этого пассажирский поезд приехал в пункт С через 4 ч 6 мин, а товарный — в пункт D через 12 ч 55 мин. Сколько времени каждый поезд находился в пути?

Условия задачи можно отразить на схеме (рис. 18.1), где буквой В обозначено положение товарного поезда в момент выхода пассажирского из пункта D.

То обстоятельство, что оба поезда находились в точке А одновременно, мы отразим на схеме с помощью вертикального отрезка, связывающего оба пути. Схема подсказывает нам и выбор неизвестных. На путь от