n = 1, 2, 3, ..., k, то последовательность называется конечной. Если же n = 1, 2, 3, ... (т. е. n пробегает все натуральные числа), то последовательность называется бесконечной.
аn = f(n) называется общим членом последовательности. Если для любых i и j, таких, что i<j, выполняется неравенство аi<аj, то последовательность называется возрастающей. Если при тех же условиях будет аi>аj, то последовательность называется убывающей. Если же при любых i и j, таких, что i<j, выполняется неравенство аi≤ аj (аi ≥ аj), то последовательность называется неубывающей (невозрастающей).
Последовательность, в которой
аi + 1 = аi + d
при всех натуральных i, называется арифметической прогрессией. Число d называется разностью арифметической прогрессии. Имеют место формулы:
2аn = аn + 1 + аn − 1; аn = а1 + d(n − 1);
где Sn — сумма n первых членов прогрессии.
Последовательность, в которой
ai + 1 = qai
при всех натуральных i, причем q ≠ 0 и ai ≠ 0, называется геометрической прогрессией, а число q называется ее знаменателем.
Для геометрической прогрессии имеют место формулы:
an = a1qn − 1; a²n = an − 1an + 1.
Вторая формула верна, если q ≠ 1. Бесконечная геометрическая прогрессия, у которой |q| < 1, называется бесконечно убывающей.
Бесконечно убывающая геометрическая прогрессия не обязательно является убывающей последовательностью. Она может быть возрастающей, например, при a1 = −1, q = ½ , а может быть колеблющейся: a1 = 1, q = −½ .
Если для бесконечной последовательности существует конечный предел последовательности ее сумм Sn, т. е. существует , то S называется суммой всех членов этой бесконечной последовательности.
Для того чтобы бесконечная геометрическая прогрессия имела сумму всех своих членов, необходимо и достаточно, чтобы она была бесконечно убывающей. В этом случае
19.1. Общий член последовательности Является эта последовательность возрастающей или убывающей?
19.2. Докажите, что если члены ap, aq, ar, as арифметической прогрессии образуют геометрическую прогрессию, то последовательность p − q, q − r, r − s является геометрической прогрессией.
19.3. Докажите, что если положительные числа a, b, с — соответственно m-й, n-й и p-й члены как арифметической, так и геометрической прогрессии, то
ab − сbс − aсa − b = 1.
19.4. Докажите, что если а, b, с образуют геометрическую прогрессию, то
где x> 0, x ≠ 1, а, b, с — различные положительные числа, отличные от единицы.
19.5. Найдите сумму
S = 7 + 77 + 777 + ... + 777...7,
где последнее слагаемое содержит n цифр.
19.6. Докажите, что где цифра 1 повторяется 2n раз, и цифры 2 и 3 только n раз.
19.7. При каких значениях x и у последовательность а1, а2, а3, где
является одновременно арифметической и геометрической прогрессией?
19.8. Пусть х1 и х2 — корни уравнения x² − 3х + А = 0, а х3 и х4 — корни уравнения x² − 12х + В = 0. Известно, что последовательность х1, х2, х3, x4 является возрастающей геометрической прогрессией. Найдите А и В.
19.9. Решите уравнение
х³ − 7х² + 14х + а = 0,
зная, что его корни образуют возрастающую геометрическую прогрессию.
19.10. В бесконечно убывающей геометрической прогрессии сумма всех членов вдвое больше суммы первых n членов. Найдите произведение первых n членов, если первый член равен √2.
19.11. Найдите трехзначное число, цифры которого образуют арифметическую прогрессию и которое делится на 45.
19.12. Найдите трехзначное число по следующим условиям: его цифры образуют геометрическую прогрессию; если из него вычесть 594, то получится число, записанное теми же цифрами, но в обратном порядке; если цифры искомого числа увеличить соответственно на 1, на 2 и на 1, то получится арифметическая прогрессия.
19.13. Имеющиеся в колхозе комбайны, работая вместе, могут убрать урожай за одни сутки. Однако по плану комбайны возвращались с других полей и вступали в работу последовательно: в первый час работал лишь один комбайн, во второй — два, в третий — три и т. д. до тех пор, пока не начали работать все комбайны, после чего в течение нескольких часов перед завершением уборки урожая действовали все комбайны. Время работы по плану можно было бы сократить на 6 ч, если бы с самого начала уборки постоянно работали все комбайны, за исключением пяти. Сколько было комбайнов в колхозе?
19.14. Три брата, возрасты которых образуют геометрическую прогрессию, делят между собой некую сумму денег пропорционально своему возрасту. Если бы они это проделали через 3 года, когда самый младший окажется вдвое моложе самого старшего, то младший получил бы на 105, а средний на 15 p. больше, чем сейчас. Сколько лет каждому из братьев?
19.15. Три отличных от нуля действительных числа образуют арифметическую прогрессию, а квадраты этих чисел, взятые в том же порядке, образуют геометрическую прогрессию. Найдите всевозможные знаменатели этой геометрической прогрессии.
19.16. Даны два числа а и b. Составим последовательность а, b, a1,b1, a2, b2, ..., аn, bn, ..., каждый член которой, начиная с третьего, равен среднему арифметическому двух предшествующих. Докажите, что
и найдите предел этой последовательности.
19.17. Найдите все положительные значения а, для которых все неотрицательные значения x, удовлетворяющие уравнению
cos [(8а − 3)x] = cos [(14а + 5)x]
и расположенные в порядке возрастания, образуют арифметическую прогрессию.
Глава 20 Суммирование
При решении задач, связанных с последовательностями, приходится доказывать утверждения такого типа: «Для любого целого n ≥ p (где p — целое) справедливо...»
Доказательство этих утверждений базируется на аксиоме индукции.
Пусть для некоторого утверждения А доказаны две теоремы.
Теорема 1. Утверждение А справедливо для n = p.
Теорема 2. Из условия, что утверждение А справедливо для всех p ≤ n ≤ k, следует, что оно справедливо для n = k + 1.
Тогда в качестве аксиомы (она называется аксиомой индукции) принимают, что утверждение А справедливо для всех n ≥ p (n, p и А — целые числа).
Метод доказательства, основанный на использовании аксиомы индукции, называется методом математической индукции.
С помощью метода математической индукции можно доказать формулы
20.1. Докажите неравенство
20.2. В арифметической прогрессии а1, а2, ..., аn первый член равен разности прогрессии: а1 = d. Считая число n данным, найдите
20.3. Найдите сумму
20.4. Найдите зависимость между натуральными n и А, если
где а ≠ 0, 1, −1.
20.5. Найдите коэффициент при хn в разложении
(1 + x + 2х² + ... + пхn)².
20.6. Решите неравенство
|x − 2х² + 4х³ − 8х4 + ... + (−2)n − 1хn + ...| < 1.
20.7. Найдите сумму
Sn = 1 · 1! + 2 · 2! + 3 · 3! + ... + n · n!.
20.8. Найдите сумму
Sn = x + 4х³ + 7х5 + 10х7 + ... + (3n − 2)х2n − 1.
20.9. Найдите сумму
Sn4 = 14 + 24 + 34 + ... + n4,
считая известными формулы для Sn, Sn², Sn³ (см. с. 103).
20.10. Натуральные числа разбиты на группы
(1), (2, 4), (3, 5, 7), (6, 8, 10, 12), (9, 11, 13, 15, 17), ...
Найдите сумму чисел в n-й группе.
20.11. Вычислите выражение
20.12. Найдите сумму
1 + 2 · 2 + 3 · 2² + ... + 100 · 299.
20.13. Найдите сумму ряда