DEA в два раза меньше.
Ответ. 3a²/2, 1/√3.
3.9. Обозначим высоту SO пирамиды через H. Предположим, что вершина пирамиды спроецируется в точку O, лежащую внутри треугольника ABC, и пусть углы SDO, SEO и SFO измеряют данные двугранные углы (рис. P.3.9, а).
Рассмотрим отдельно треугольник ABC (рис. P.3.9, б). Площадь его, с одной стороны, равна сумме площадей треугольников AOB, BOC и COA, а с другой стороны, равна a²√3/4. Поэтому
½a(OF + OD + OE) = a²√3/4, т.е. OF + OD + OE = a√3/2.
Каждый из отрезков OF, OD и OE можно выразить через H:
OD = H ctg α, OE = H ctg β, OF = H ctg γ. Следовательно,
H = a√3/2(ctg α + ctg β + ctg γ).
Если точка О лежит вне треугольника ABC, то один из данных двугранных углов тупой (на рис. P.3.9, в угол при BC, т. е. α). Следовательно, его котангенс будет отрицательным. Это соответствует тому факту, что площадь треугольника ABC равна сумме площадей треугольников АВО и АОС за вычетом площади треугольника ВОС. Таким образом, результат останется таким же, как в случае, когда О лежит внутри треугольника ABC.
Наконец, как легко убедиться, полученная формула дает верный результат и в том случае, когда точка О лежит на стороне треугольника ABC или совпадает с его вершиной. (Соответствующие котангенсы обращаются в нуль.)
Ответ. V = a³/8(ctg α + ctg β + ctg γ).
3.10. Так как AC = BC по условию (рис. P.3.10), то прямоугольные треугольники ADC и BDC равны и, следовательно, AD = BD. Треугольник ADB — равнобедренный, его медиана DE, проведенная из вершины D, будет одновременно и высотой. Таким образом, мы доказали, что двугранный угол при ребре AB измеряется линейным углом DEC, который обозначим через x.
Высота DO треугольника EDC будет высотой пирамиды. B самом деле, ребро AB перпендикулярно к ED и EP, т. е. к плоскости EDC. Отрезок DO, следовательно, перпендикулярен не только к EC, но и к AB, т. е. перпендикулярен к плоскости ABC.
Заметим также, что CD — перпендикуляр к плоскости ADB, а поэтому треугольник EDC прямоугольный с прямым углом при вершине D.
Мы знаем, что V = ⅓S · OD. Отрезок OD равен ED sin x, а отрезок ED в свою очередь равен EC cos x, т. е. 2S/a cos x.
Итак,
V = ⅓S · 2S/a cos x sin x,
откуда sin 2x = 3Va/S².
Чтобы найти x, заметим, что угол x острый.
Ответ. ½acrsin 3aV/S².
3.11. Так как площадь основания равна √3, то сторона основания равна 2. Из треугольника AOS (рис. P.3.11) находим AO = b cos x; с другой стороны,
AO = ⅔AD = ⅔ a√3/2.
Поэтому
a/√3 = b cos x.
Из треугольника CDS находим CD = a/2 = b sin 2x. Разделив второе соотношение на первое, получим
sin x = √3/4.
Так как SD = a/2 ctg 2x, то нужно вычислить ctg 2x:
Следовательно, SD = 5/√39, а площадь боковой поверхности равна 3/2а · SD.
Ответ.5/√39.
3.12. На рис. P.3.12 треугольники AEC и С1ЕА1 подобны, так как медианы AE и СЕ делятся точками C1 и A1 в одинаковом отношении 2:1.
Поэтому C1A1 = ⅓ AC. Аналогично доказывается, что В1А1 = ⅓ AB и C1B1 = ⅓ BC и т. д., т. е. площади S1 и S оснований пирамиды относятся как 1 : 9. Подобные треугольники ABC и A1B1C1 лежат в параллельных плоскостях, так как их стороны параллельны. Следовательно, высоты DN и D1N1, проведенные в тетраэдрах, параллельны и прямоугольные треугольники DNC и D1N1C1 подобны, т. е. D1N1 = ⅓ DN. Остается сравнить объемы
Ответ.1/27.
3.13. Пусть О1, О2 и О3 — точки пересечения медиан соответствующих граней (на рис. P.3.13 изображены лишь О1 и О2), О — центр шара.
Прямоугольные треугольники SO1О, SO2О и SO3О равны (О1О = О2О = О3О, OS — общая гипотенуза). Следовательно, SO1 = SO2 = SO3, и поэтому SB1 = SB2 = SB3.
Докажем теперь, что треугольник А1А2А3 правильный. Для этого достаточно установить равенство треугольников A2SB1 и A2SB3, т. е. любых соседних из шести таких треугольников. Установим в них равенство углов при вершине S. Пусть C2 — точка пересечения плоскости О1ОО2 с ребром SA2. Прямоугольные треугольники О1SC2 и О2SC2 тоже равны. Отсюда углы О1SC2 и О2SC2 равны и, следовательно, равны треугольники B1SA2 и B3SA2. Таким образом, В1А2 = В3А2, т. е. А2А3 = А1А2. Итак, в основании пирамиды лежит правильный треугольник.
Из равенства треугольников B1SA2 и B3SA2 следует также равенство треугольников A1SA2 и A2SA3, т. е. равенство всех боковых ребер. Это означает, что вершина S проецируется в центр основания А1А2А3. Тем самым доказано, что пирамида правильная.
3.14. Достроим пирамиду до полной. Все параллельные сечения пирамиды подобны. Составим схематический рис. P.3.14, на котором А и B — стороны квадратов, равновеликих основаниям, M — сторона квадрата, равновеликого сечению, проходящему через середину высоты данной усеченной пирамиды. Последнее условие мы запишем так:
Из подобия треугольников, изображенных на рис. P.3.14, следует, что
откуда
Составим среднее арифметическое величин А и B:
что и требовалось доказать.
3.15. Достроим треугольник ABC до параллелограмма ABCE (рис. P.3.15). Угол DAE равен углу между AD и BC. Обозначим его через x.
B треугольнике DAE
AD = а1, AE = а.
Вычислим DE. Так как в дальнейшем мы воспользуемся теоремой косинусов, то удобнее находить DE².
Отрезок DO является медианой в треугольниках ADC и BDE:
Чтобы найти DE², достаточно вычислить BE². Но ВЕ — диагональ параллелограмма ABCЕ, т. е. ВЕ² = 2а² + 2с² − b². Следовательно,
Применим к треугольнику ADE теорему косинусов:
DE² = a1² + a² − 2aa1 cos x.
Приравнивая два выражения для DЕ², найдем cos x. При этом следует иметь в виду, что по определению угла между скрещивающимися прямыми x — острый угол.
Ответ.
3.16. Плоскость ABE (рис. P.3.16) делит тетраэдр на две пирамиды SABE и CABE с общим основанием ABE.
Так как отношение объемов дано, а основание у пирамиды общее, то h2 : h1 = 5 : 3, в силу же равенства SD = CD имеем
sin α/sin β = 3/5, т.е. sin α = 3/5 sin β.
Кроме того, так как тетраэдр правильный, углы α и β образуют угол SDO, косинус которого равен 1. Поэтому
cos α cos β − sin α sin β = ⅓.
Выразив в этом уравнении sin β и cos β через sin α (так как пирамида правильная, углы α и β острые), получим
где y = sin² α.
Возведем в квадрат и раскроем скобки; найдем y = 2/11 и вычислим tg α:
Поскольку sin² β = 25/9 sin² α = 50/99, то аналогично найдем tg β.