А1O1 призмы принадлежит плоскости АА1С1С, т. е. Ha = S2, откуда
Возможен еще один случай, который является как бы совпадением двух разобранных вариантов — точка О совпадает с вершиной B. Тогда призма прямая и при S1 = S2 из формулы (6) получим
Поскольку в первом случае S1 = аВ1D, S2 = аВ1В и В1D<В1В, то первому случаю соответствует требование S1<S2. Условие положительности подкоренного выражения 4 S²1 − S²2 приводит ко второму ограничению S2< 2S1.
Для второго случая получаем S1 = аВ1D, S2 = aH. Так как В1D>H, то S1 >S2. Случай S1 = S2 можно отнести к этому случаю.
Ответ. при S1<S2< 2S1, а = S2/H при S1 ≥ S2.
3.53. Проведем в кубе сечение AB1C1D (рис. P.3.53, а). Оно разобьет куб на две равные треугольные призмы. Возьмем одну из призм (рис P.3.53, б) и в качестве основания четырехугольной пирамиды выберем четырехугольник AB1C1D, а в качестве ее вершины точку D1. Оставшаяся часть призмы (D1AA1B1) образует треугольную пирамиду. Аналогично разобьем и вторую призму. Поскольку четыре пирамиды заполняют весь объем куба, их суммирующий объем максимален.
3.54. Пусть O1 — центр шара, описанного около пирамиды SABC, а O — центр правильного треугольника ABC, лежащего в ее основании. Тогда O1O — перпендикуляр к плоскости основания (рис. P.3.54).
(По условию точка O1 равноудалена от A, B и C.) Обозначим длину отрезка O1O через x, а длину отрезка OP через y. Так как AO1 = SO1 = R, а AO = 6/√3 = 2√3, то по теореме Пифагора для треугольника AOO1 : x² + AO² = R², т. е. x² + 12 = R². Соотношение для y найдем из треугольника SO1D, где O1D = y, SO1 = R. Тогда SD² = R² − y². Но SD есть либо 4 − x, либо 4 + x в зависимости от расположения O1. Поэтому найдем x: x = |SP − SD|, что охватывает сразу два возможных случая и приводит к уравнению
Отсюда
Но x² = R² − 12, т. е.
Тогда а после возведения в квадрат и приведения подобных членов: 64R² = 28² + 8у² + y4 или 64R² = (y² + 4)² + (28² − 16).
Поскольку
28² − 16/64 = 4² · 7² − 4²/4² · 4 = 7² − 1/4 = 48/4 = 12,
имеем R² = (y² + 4)²/64 + 12. Это выражение при x = 0 достигает своего минимального значения R² = 4²/64 + 12 = 12¼ = 49/4, т.е. R = 7/2.
Ответ. 3,5.
Замечание. Условие задачи, в силу которого основание P высоты SP пирамиды SABC принадлежит ее основанию ABC, при решении не использовано. Это условие оказалось лишним. Следовательно, в постановке задачи имеется неточность. Мы пытались использовать это условие, когда в первом указании строили прямую призму, верхнему основанию которой должна принадлежать вершина S. Эти ограничения оказались невостребованными при решении задачи. Задача реально предлагалась на вступительных экзаменах.
Глава 4Геометрические задачи на проекционном чертеже
4.1. Проведем AE до пересечения с ОС в точке F (рис. P.4.1, а). Точка F лежит в плоскости грани DD1C1C, в которой лежит и точка О, принадлежащая сечению. Проведем FO до пересечения с D1D в точке N. Таким образом, сечение, о котором идет речь в условии, построено; это ANME (см. рис. P.4.1, а).
Обозначим ребро куба через а и вычислим объем фигуры, лежащей под сечением, как разность объемов двух пирамид: NAFD и MEFC.
Отрезок EC — средняя линия в треугольнике AFD, следовательно, CF = СО = а.
Вычертим отдельно треугольник BFD и проведем OK || ND (рис. P.4.1, б). Так как О — центр грани куба, то OK = a/2, DK = KC = а/2. Из подобия образовавшихся треугольников находим
MC = а/3, ND = 2MC = 2а/3.
Так как треугольники EFC и EAB равны (см. рис. P.4.1, а), то площадь треугольника AFD равна а², а площадь треугольника EFC равна a²/4. Теперь можно вычислить объем фигуры, лежащей под сечением ANME:
⅓ND · a² − ⅓MC · a²/4 = ⅓2a/3a² − ⅓a/3a²/4 = 7a³/36,
и найти искомое отношение объемов.
Ответ. 29 : 7.
4.2. Проведем прямую FG, которая пересечет А1В1 и А1D1 в точках M и L соответственно (рис. P.4.2). Соединив точки M и А и точки L и А, получим еще две точки E и K, принадлежащие сечению.
Площадь сечения AEFGK вычислим как разность площади треугольника AML и удвоенной площади треугольника KGL.
Треугольники ЕВ1М, FC1G и GD1L равны. Следовательно, D1L = В1F = ½, MF = FG = GL. С помощью треугольников МА1L и АА1L можно найти стороны треугольника AML:
его высоту
и его площадь
Треугольники AML и KGL подобны, так как GK и AM параллельны (они получены в результате пересечения двух параллельных граней куба плоскостью сечения), с коэффициентом подобия ⅓ (мы доказали раньше, что 3GL = ML). Следовательно, площадь треугольника KGL равна 1/9 площади треугольника AML, а площадь сечения AEFGK равна 7/9 площади AML.
Ответ.
4.3. Пусть K — точка пересечения AO1 и C1C (рис. P.4.3). Соединим K с центром Q боковой грани BB1C1C и получим сечение куба. Так как Q — центр симметрии квадрата B1C1CB, то B1E = FC. Проведем O1C1 и AC. Отрезок O1C1 — средняя линия в треугольнике AKC, и, следовательно, KC1 = C1C.
Треугольники KFC и KEC1 подобны с коэффициентом подобия 2. Поэтому FC = 2EC1. Так как FC = В1Е, то отношение отрезков B1E к ЕС1 равно 2.
Ответ. 2.
4.4. Пусть высота данной пирамиды h, сторона основания а. Найдем объем фигуры, лежащей под сечением BEFG (рис. P.4.4, а), как разность объемов пирамид EBCM и FGDM.
Объем первой пирамиды равен
⅓h/23a²/2 = ¾(⅓ha²) = ¾v,
где v — объем данной пирамиды.
Чтобы найти высоту пирамиды FGDM, сделаем чертеж плоскости, в которой лежит грань SDC (рис. P.4.4, б). Проведем EL параллельно SD. Так как E — середина SC, то DL = ½DC = a/2. Из подобия треугольников MEL и MFD найдем
FD/EL = MD/ML = 2a/2,5a = 4/5.
Нетрудно проверить (сделайте это самостоятельно), что высота пирамиды FGDM равна 4/5 высоты EBCM, т. е. 4h/10.
Из подобия треугольников MGD и MBC (см. рис. P.4.4, а) найдем GD = 2a/3. Это означает, что объем пирамиды FGDM равен
⅓4h/102a²/3 = 4/15(⅓ha²) = 4/15v,
Таким образом, объем фигуры, лежащей под сечением, равен
¾v − 4/15v = 29/