Сборник задач по математике с решениями для поступающих в вузы — страница 47 из 76

z2 = 3. Первое уравнение данной системы можно записать в виде

Если  откуда x = 0. Второе уравнение системы дает тогда два значения: y1 = 0, y2 = −1, где y = 0 не удовлетворяет первому уравнению. Если z = 3, то x = 4/3; второе уравнение системы после несложных преобразований принимает вид 3y²+ y + 4 = 0, т. е. не имеет действительных решений.

Проверка убеждает нас в том, что x = 0, y = −1 — единственное решение системы.

Ответ. (0, −1).

9.35. Запишем данное уравнение в виде

|6 − |x − 3| − |x + 1|| = а(x + 5) + 4.    (10)

Построим график функции

= |6 − |x − 3| − |x + 1||.    (11)

Начнем с графика функции

y = 6 − |x − 3| − |x + 1|,    (12)

который легко построить, разбив числовую ось на три интервала точками x = −1, x = 3 (рис. P.9.35).

Получим

Этот график совпадает с графиком функции (11) там, где значения y, полученные из (13), неотрицательны. Если же значения y, полученные из (13), отрицательны, то им соответствуют симметричные относительно оси Ox точки графика. Таким образом, для интервала −2 ≤ x ≤ 4 графики функций (11) и (12) совпадают, а при x< −2 и при x> 4 мы получаем симметричные относительно оси Ox лучи. В итоге для функции (11) имеем:

График этой функции изображен на рис. P.9.35 жирной линией (около каждого отрезка указан номер соответствующего ему уравнения).

Если подойти к задаче формально, то мы можем рассчитать точки пересечения прямой (19) — см. ниже — с каждой из прямых (14), (15), (16), (17), (18). Получим соответственно:

x1 = −5a + 8/a + 2, x2 = 5a/2 − a, x3 = −5a + 2/a, x4  = 4 − 5a/a + 2, x5 = 5a + 12/2 − a.

Рассмотрим теперь при разных значениях параметра а семейство прямых

y = а(+ 5) + 4     (19)

и определим, сколько точек пересечения y каждой из прямых (19) с графиком функции (13).

Тангенс угла наклона прямых (19) равен а и все эти прямые проходят через точку А(−5; 4). Обозначим на графике точки В(−2; 0), С(−1; 2), D(3; 2), E(4; 0), а также точки G и H, расположенные на левом и правом лучах графика (11) соответственно. Соединим точку А(−5; 4) с точками /(−2; 0), С(−1; 2), 1(3; 2) и E(4; 0). Проведем через точку А прямые AG1 || EH. Обозначим на каждой из проведенных нами через точку А прямых ее угловой коэффициент а: для AC имеем а = −2, для AB, AC, AEAD и AH1 соответственно а принимает значения: −4/3, −½, −4/9, ¼, 2.

Теперь нетрудно подсчитать, при каких а какие решения имеет данное в условии уравнение. Получим

одно решение x1 при а< −2;

решений нет при −2 ≤ а< −4/3;

одно решение x1 = x2 при а = −4/3;

два решения x1, x2 при −4/3<а< −½;

два решения x1, x2 = x3 при а = −½;

два решения x2, x3 при −½ <а< −4/9;

три решения x1, x3, x4 = x5 при а = −4/9;

четыре решения x1, x3, x4, x5 при −4/9<а< −¼;

три решения x1, x3 = x4, x5 при а = −¼;

два решения x1, x5 при −¼ <а< 2;

одно решение x1 при а ≥ 2.

Замечание: при а = −2 решений нет, а при а = 2 есть единственное решение x1, которое при а = 2 существует.

9.36. После возведения в квадрат и приведения подобных можно утверждать, что уравнение равносильно системе

Дискриминант уравнения (20) равен 4a² + 12a + 9 = (2a + 3)². Он неотрицателен. Уравнение имеет один корень x = 3a при а =3/2 и два корня x1,2 = 3a ± |2a + 3| при остальных а.

Если а = −3/2, то x = −9/2. При этих значениях а и x неравенство (21) удовлетворяется.

Пусть а< −3/2. Тогда |2a + 3|= −2a − 3, т. е. x1 = 5а + 3, x2 = а − 3. Для каждого из этих корней решим неравенство (21) и учтем ограничение а< −3/2 . Пусть сначала x1 = 5а + 3, тогда:

Решением последней системы будет а< −3/2, т. е. корень x1= 5а + 3 существует при всех а< −3/2.

Пусть теперь x2 = а − 3, тогда:

Итак, корень x2 = а − 3 существует при всех а< −3/2.

Таким образом, при а< −3/2 исходное уравнение имеет два корня x1 = 5а + 3 и x2 = а − 3.

Аналогично исследуется случай а< −3/2. При этом |2a + 3| = 2a + 3 и соответственно x1 = 3a − (2a + 3); x2 = 3a + (2a + 3) = 5а + 3. Подставляем эти значения в (21). Для x1 = а − 3 получим:

Аналогично для x2 = 5а + 3 имеем:

Итак, x1 = а − 3 будет корнем исходного уравнения, когда

3/2 <а ≤ 3 и а ≥ 12.

x2 = 5а + 3 будет корнем, когда −3/2<а ≤ −12/17; а ≥ −51/85.

Обобщим результаты на числовой оси а (рис. P.9.36).

Ответ. При a ∈ (−∞, −3/2) ∪ (−3/2, −12/17) ∪ (−51/85, 3) ∪ [12, +∞)  уравнение имеет два корня: x1 = 5а + 3, x2 = а − 3. При а = −3 имеет один корень x = 3a = −9/2. При а ∈ (−12/17, −51/85) уравнение имеет один корень x = а − 3, а при а ∈ (3, 12) — один корень x = 5а + 3.

9.37. Уравнение можно записать в виде

x(5x/5x² − 7x + 6 + 2x/5x² − x + 6 − 1) = 0.

При x = 0 множитель в скобках существует и равен −1. Поэтому x = 0 — корень данного уравнения. Другие корни должны быть корнями уравнения

5x/5x² − 7x + 6 + 2x/5x² − x + 6 = 1.   (22)

В знаменателях стоят симметрические многочлены. Значение x = 0 не является корнем (22) и выражение (22) не теряет при этом значении смысла. Поэтому разделим числители и знаменатели каждой дроби на x:

Проведем замену

t = 5х + 6/x.    (23)

Тогда

5/t − 7 + 2/t − 1 = 1.    (24)

Дальше решение стандартно. Уравнение (24) имеет корни t1 = 13 и t2 = 2. Подставляя их в (23), найдем для t1 значения x2 = 2, x3 = 3/5. Для t2 решений нет.

Ответ. 0; 2; 3/5.

9.38. Пусть x + y = u, xy = v. Тогда получим

Во второе уравнение подставим u² = v + 327:

(327 − v)² − v² = 84 693,

или

327² − 2 · 327v = 84 963.

Так как 84 693 = 327 · 259, то сократим уравнение на 327 и найдем v = 34, u² = 361.

Остается решить две системы:

Ответ. (2, 17), (17, 2), (−2, −17), (−17, −2).

Глава 10Алгебраические неравенства

Ответы к упражнениям на с. 59, 62 и 63.

1. Получим совокупность неравенств, имеющую те же самые решения.

2. Получим систему неравенств, не имеющую решений.

3. Ответ. −1 <x ≤ 1, 5 <x ≤ 7, x> 8.

4. Вначале нужно переписать неравенство в виде

(x5/2)(zx − 3)(x − 4)² ≤ 0.

Последний множитель показывает, что точка 4 обязательно должна принадлежать множеству решений, этим его влияние ограничивается.

Ответ.5/2 ≤ x ≤ 3, x = 4.

5. Поскольку неравенство строгое, то множители, стоящие в знаменателе, и множители, стоящие в числителе, играют одинаковую роль. Данное неравенство равносильно такому:

(x + 3)²(x + 1)(x − 2)(x − 4)²(x − 5) < 0.

Достаточно решить неравенство