Первая система может быть переписана так:
откуда
(Для k и n берутся только неотрицательные значения.) Приравнивая различные выражения для x, получим k² = n² + 1, откуда (k − n)(k + n) = 1. Так как k и n — целые и неотрицательные, то
и, следовательно k = 1, n = 0.
Теперь x определяется однозначно: x = 4.
Решаем вторую систему:
где k, n = 0, 1, 2, ... .
Приравнивая правые части последней системы, получим
(2k + 1)² − (2n + 1)² = 4, или (k − n)(k + n + 1) = 1.
Так как n и k — целые и неотрицательные числа, то последнее уравнение равносильно системе
которая не имеет целых решений.
Ответ. 4.
13.26. Данное уравнение можно переписать в виде
sin³ x + cos³ x = sin² x + cos² x,
откуда
sin² x (1 − sin x) + cos² x (1 − cos x) = 0.
Сумма двух неотрицательных слагаемых равна нулю тогда и только тогда, когда оба слагаемых равны нулю:
Если в первом уравнении sin x = 0, то cos x ≠ 0. Получаем систему решения которой: x = 2kπ.
Если в первом уравнении 1 − sin x = 0, т. е. sin x = 1, то cos x ≠ 1. Приходим к системе
решения которой: x = π(4k + 1)/2.
Ответ. 2kπ; π(4k + 1)/2.
13.27. Способ 1. Дополним левую часть данного уравнения до полного квадрата. Для этого придется ввести еще одно слагаемое: cos x cos 3x, знак которого зависит от знака cos x, так как из данного уравнения следует, что cos 3x ≥ 0.
Рассмотрим три случая.
1. Если cos x> 0, то перепишем данное уравнение в виде
cos² 3x + ¼ cos² x − cos x cos 3x = cos 3x cos4x − cos 3x cos x,
или
(cos 3x − ½ cos x)² + cos x cos 3x (1 − cos³ x) = 0.
В левой части стоит сумма неотрицательных выражений, следовательно,
По предположению cos x> 0. Из первого уравнения последней системы следует, что тогда cos 3x> 0. Заметим, что
1 − cos³ x = (1 − cos x)(1 + cos x + cos² x),
причем всегда 1 + cos x + cos² x> 0. В итоге приходим к системе
которая несовместна, так как при cos x = 1 мы получим cos 3x = 1, а не ½.
2. Если cos x = 0, то cos 3x = 4 cos³ x − 3 cos x = 0, и данное уравнение удовлетворяется. Получаем совокупность корней: x = π/2 + nπ.
3. Если cos x< 0, то преобразуем уравнение к виду
(cos 3x + ½ cos x)² + cos 3x cos x (−1 − cos³ x) = 0,
в котором снова оба слагаемых неотрицательны. Аналогично случаю 1, это приводит нас к несовместной системе (закончить исследование самостоятельно).
Способ 2. Уравнение можно рассматривать как квадратное относительно cos 3x:
cos² 3x − cos 3x cos4x + ¼ cos² x = 0.
Следовательно,
Условие cos8x − cos² x = cos² x (cos6x − 1) ≥ 0 является следствием данного уравнения. Если cos² x = 0, то x = π/2 + πk; эти значения x удовлетворяют первоначальному уравнению. Если же cos² x = 1, то исходное уравнение примет вид
cos² 3x − cos 3x + ¼ = 0, т. е. cos 3x = ½.
Из первого условия cos² x = 1 находим x = πk. Так как cos 3πk ≠ 2 , то в этом случае решений мы не получаем.
На этом примере хорошо видно, что отказ от равносильных преобразований может позволить решить задачу проще и короче.
Ответ.π/2 + nπ.
13.28. Данное уравнение равносильно системе
решая которую найдем ах = kπ и x = 2nπ. Приравнивая значения неизвестного, найденные из каждого уравнения, получим
kπ/a = 2nπ, т. е. k/a = 2n.
Это в том случае, если а ≠ 0. Но если а = 0, данное уравнение примет вид cos x = 1 и, следовательно, имеет бесконечное множество корней.
Итак, k = 2nа.
Если а = p/q — рациональное число, то k = 2np/q. Это значит, что при всех n, кратных q, мы будем получать корень данного уравнения x = 2nπ, т. е. уравнение имеет бесконечное множество корней.
Пусть теперь а — иррациональное число. Тогда при всех n, кроме n = 0, k не будет целым, а уравнение будет иметь единственное решение x = 0.
Ответ.а — иррациональное.
13.29. Так как второе уравнение легко приводится к виду
sin (2x − y) = 0,
то y = 2x + πk. После подстановки этих значений y в первое уравнение получим
4 tg Зх = 3 tg 4x, или 4 (tg 4x − tg Зх) = tg 4x.
Используя простые преобразования, приходим к равносильным уравнениям:
Выражение, стоящее в скобках, может обратиться в нуль лишь при условии, что cos x, cos 2x, cos Зх одновременно равны по абсолютной величине единице. Это означает, что непременно |cos x| = 1, т. е. корнями выражения, заключенного в скобки, могут быть лишь числа x = πn, являющиеся также и корнями множителя sin x. (Обратите внимание на то обстоятельство, что здесь нельзя написать x = πk, поскольку буква k уже занята в записи решения второго уравнения.)
Таким образом, все решения данной системы содержатся в системе чисел x = πn, y = π(2n + k), которую можно переписать так: x = πn, y = πk. Непосредственной подстановкой в исходную систему убеждаемся, что каждая пара из системы этих значений x и y является решением.
Ответ.x = πk, y = πn.
13.30. Преобразовав левую часть второго уравнения в разность косинусов, получим
cos (2y + x) = О, откуда 2y = 2 − x + kn.
Приведем теперь первое уравнение системы к виду, удобному для логарифмирования:
При подстановке в правую часть значения 2y, полученного ранее, придется рассматривать случаи k = 2p и k = 2p + 1.
Если k = 2p, то
2y = π/2 − x + 2pπ
и sin 2y = cos x. Уравнение (1) преобразуется к виду
Если же k = 2p + 1, то
2y = π/2 − x + π + 2pπ = 3π/2 − x + 2pπ
и sin 2y = −cos x. Уравнение (1) теперь примет вид
Поскольку значения x, при которых cos x = 0, удовлетворяют как уравнению (2), так и уравнению (3), то значениям x = (2n + 1)π/2 соответствуют все целые значения k. Поэтому
2y = π/2 − x + πk = π − πn + πk = π(k − n + 1).
Так как k − n + 1 принимает все целые значения для любого фиксированного k, то можно обозначить k − n + 1 = p. Получаем систему решений
Остается приравнять нулю, выражения, стоящие в скобках в уравнениях (2) и (3).
Для уравнения (2) имеем
sin x + cos 2x = 0, cos 2x = cos (x + π/2),
откуда x2 = (4n + 1)π/2, x3 = (4n − 1)π/6. Получаем еще две системы решений (здесь k = 2p)
Для уравнения (3)
cos 2x − sin x = 0, cos 2x = cos (π/2 − x),
откуда x4 = (4n − 1)π/2, x5 = (4n + 1)π/6. В этом случае k = 2p + 1, и мы находим еще две системы решений
Нетрудно заметить, что вторая и четвертая системы решений содержатся в первой.
Проверка не нужна. (Докажите.)
Ответ.
13.31. Перепишем систему в виде
Введем обозначения: sin x = u, sin y = v. Получим систему
Воспользуемся заменой v = ut:
откуда
5(t² − 3t) = 21 − t²,
т. е.
2t² − 5t − 7 = 0, t1 = 7/2, t2 = −1.
Если t = 7/2, то из первого уравнения последней системы мы получим
u² = 4/7; u ±2/√7; v = ut = ±2/√77/2 = ±√7,
что невозможно, так как v = sin y.
Если же t = −1, то u² = ¼, u = ±½.
Приходим к совокупности двух систем
Ответ.
13.32. Второе уравнение можно преобразовать так:
sin y + sin (2x − y) = sin y,
т. е. sin (2x − y) = 0, откуда y = 2x + nπ. Подставим в первое уравнение системы
4 tg 3x = 3 tg 4x.
При условии что cos 3x ≠ 0 и cos 4x ≠ 0, это уравнение равносильно такому:
4 sin 3x cos 4x − 3 sin 4