x cos 3x = 0,
или
sin 3x cos 4x − 3 (sin 4x cos 3x − sin 3x cos 4x) = 0,
sin 3x cos 4x − 3 sin x = 0.
Так как sin 3x cos 4x = ½(sin 7х − sin x), то придем к уравнению
7 sin x = sin 7x.
По индукции можно доказать, что
sin пх ≤ n|sin x|,
причем равенство достигается лишь при x = kπ. Следовательно, уравнение 7 sin x = sin 7х имеет решения x = kπ.
При этом cos 3x ≠ 0 и cos 4x ≠ 0.
Подставляя в выражение для y, получим y = nπ.
Ответ.x =kπ, y = kπ.
13.33. Возведем каждое уравнение в квадрат и сложим:
2 = sin² y + 5 cos² y,
откуда cos² y = ¼, т. е. cos y = ±½.
Учитывая второе уравнение исходной системы, приходим к совокупности двух систем
Возводя при решении оба уравнения в квадрат, мы могли приобрести посторонние решения. Отсеять их можно просто: достаточно выбрать sin x и sin y так, чтобы они имели одинаковый знак (для cos x и cos y мы это уже обеспечили). Оба этих требования означают, что x и y должны лежать в одной четверти.
Решая первую систему, получим
Значения x и y будут лежать в одной четверти, если мы одновременно возьмем только верхние или только нижние знаки.
Аналогично поступаем со второй системой.
Ответ.
где одновременно берут либо только верхние, либо только нижние знаки.
13.34. Так как sin πx²/2 = 1, то
πx²/2 = π/2 + 2πn,
откуда x² = 4n + 1 и
Подставив во второе уравнение, найдем
Чтобы это равенство выполнялось, необходимо
откуда n ≤ 2.
Ответ.
где n = 0, 1, 2. Всего 12 решений (10 не совпадающих).
13.35. Разделив второе уравнение на первое, получим tg y = 2 tg x. Так как x + y = π − z, то tg z = −tg (π − z) = −tg (x + y).
По формуле тангенса суммы получаем
Применение неабсолютного тождества не приводит к потере решений, так как tg x и tg y входят в данную систему.
Подставляем в первое уравнение
откуда tg² x = 1, x = kπ ± π/4. Найти y и z теперь не составляет труда.
Производя вычисления отдельно для x = kπ + /4 и для x = kπ − /4, после проверки получим решение системы.
Ответ.
13.36. Так как в уравнения системы входят одновременно tg x и ctg x, tg y и ctg y, то неизвестные не могут принимать значения kπ/2. С учетом этого данную систему можно записать сначала так:
а затем так:
откуда а tg y = 2 tg x.
Если а = 0, то tg x = 0, а ctg x не существует. Поэтому а ≠ 0 и tg y = 2/a tg x. Подставляем в первое уравнение системы
tg x + a/2 tg x = a, т. е. 2 tg² x − 2a tg x + a = 0.
Решаем последнее уравнение:
и находим tg y:
Дискриминант стоящего слева квадратного трехчлена равен а² − 2a. Он неотрицателен, если а ≤ 0 или а ≥ 2. Значение а = 0 нужно исключить.
При остальных а ни tg x, ни tg y не обращаются в нуль и существуют. Остается сделать проверку.
Ответ. Если а< 0 или а ≥ 2, то
где одновременно берутся либо верхние, либо нижние знаки.
13.37. Перенесем sin y и cos y в правую часть:
Возведем каждое уравнение в квадрат и сложим:
1 = 2 − 2(sin α sin y + cos α cos y),
т. е. cos (y − α) = ½. Таким образом, y − α = 2nπ ± π/3. Аналогично найдем x − α = 2kπ ± π/3.
Система еще не решена, так как при возведении в квадрат могли быть приобретены посторонние корни. Чтобы сделать проверку, подставим x = α + 2kπ ± π/3 и y = α + 2nπ ± π/3 в данную систему:
Обратим внимание на то, что в этой записи не исключается возможность выбора произвольных комбинаций знаков плюс и минус для x и y.
Если в выражениях для x и y взять одинаковые знаки, например плюс, то получим систему
откуда следует
tg (α + π/3) = tg α или ctg (α + π/3) = ctg α,
что неверно при всех α.
Если взять разные знаки, то
sin (α + π/3) + sin (α − π/3) = 2 sin α cos π/3 = sin α,
cos (α + π/3) + cos (α − π/3) = 2 cos α cos π/3 = cos α,
т. е. каждое уравнение системы превращается в тождество.
Ответ.
где берутся или только верхние, или только нижние знаки.
Замечание. Найдя y = α + 2nπ ± π/3, можно было искать x с помощью подстановки. Однако это не избавило бы нас от необходимости делать проверку, так как в процессе решения уравнения возводились в квадрат.
13.38. Первое уравнение перепишем в виде
sin (x − y) − cos (x + y) = 2a.
Из второго найдем
cos (x + y) = cos [2 arcsin (a + ½)] = 1 − 2 sin² [arcsin (a + ½)] = 1 − 2(a + ½)² = ½ − 2a² − 2a.
Следовательно,
sin (x − y) = 2a + cos (x + y) = ½ − 2a² = 1 − 4a²/2.
Прежде чем решать систему
выясним, при каких а она имеет решение.
Первоначальная система накладывает на параметр а такие ограничения: |а| ≤ 1, | а + ½| ≤ 1, где первое — следствие того, что в левой части первого уравнения стоит произведение синуса и косинуса, а второе — следствие определения арксинуса.
Поскольку при преобразованиях исходной системы равносильность не нарушалась, то нет необходимости учитывать первоначальные ограничения, так как они будут содержаться в ограничениях системы (4):
Итак, если параметр а лежит на интервале −√3/2 ≤ а ≤ ½, то систему (4) можно переписать в виде
Решая эту систему, найдем x и y. Остается сделать проверку.
Ответ. При −√3/2 ≤ а ≤ ½
13.39. Обозначим tg² x = u, tg² y = v. Тогда в левой части уравнения получим u² + v² + 2/uv. Это выражение не может стать меньше, чем 2uv + 2/uv, так как u² + v² ≥ 2uv. Выражение 2uv + 2/uv тоже легко оценить:
2[uv + 1/uv] ≥ 4,
причем равенство в первом и во втором случаях достигается лишь при u = v = 1.
Таким образом, сумма, стоящая в левой части равенства, не может стать меньше 4, в то время как правая часть этого равенства не может превзойти 4. Остается единственная возможность: обе части равенства одновременно равны 4. Получаем систему
Второму уравнению удовлетворяют значения x = ±π/4 + kπ, y = ±π/4 + nπ, где знаки берутся в произвольных сочетаниях. Однако первое уравнение будет удовлетворяться только в том случае, когда в выражениях для x и y взяты одинаковые знаки.
Ответ.
13.40. Способ 1. Умножив sin² x на sin² 3x + cos² 3x = 1 и сгруппировав члены, содержащие sin² 3x, получим
sin² x cos² 3x + sin² 3x(sin² x − sin x + ¼) = 0,
или
sin² x cos² 3x + sin² 3x(sin x − ½)² = 0.
Последнее уравнение эквивалентно системе
Корни первого уравнения найти нетрудно:
x1 — nπ, x2 = π/6 + nπ/3.
Подставляя x1 во второе уравнение, убеждаемся, что оно удовлетворяется при этих значениях неизвестного. Подставляя во второе уравнение x2, получим
sin (π/2 + nπ) [sin (π/6 + nπ/3) − ½] = 0.
Так как первый сомножитель никогда не обращается в нуль, то последнее равенство можно записать так:
sin (π/6 + nπ/3) = sin π/6.
Воспользовавшись условием равенства синусов (если sin α = sin β, то либо α − β = 2kπ, либо α + β = (2k + 1)π), получим
π/3 + nπ/3 = (2k + 1)π, откуда n = 6k + 2,
и
nπ/3 = 2kπ, откуда n = 6k.
Таким образом,
x1 = nπ, x2 = π/6 + 2kπ, x3 = 5π/6 + 2kπ.
Способ 2. Перепишем уравнение в виде
4 sin² x − 4 sin x sin² 3x + sin² 3x = 0,
т. е.
(2 sin x − sin² 3x)² + (sin² 3x − sin4 3x) = 0.
Так как оба слагаемых неотрицательны, то