Сборник задач по математике с решениями для поступающих в вузы — страница 69 из 76

v ≤ 4/35, в то время как решение первоначальной системы v = 4/35.

Ответ. 16 ч 15 мин.

18.18. Пересылка одной детали в каждом из трех комплектов обходится соответственно в 2/7, ¼ и 7/25 p., т. е. после приведения к общему знаменателю: 200/700, 175/700, 196/700 p. Самой дешевой оказывается пересылка в комплектах по 40 деталей. Однако 1100 на 40 не делится и поэтому придется заказывать не только самые выгодные комплекты. Чтобы потерять как можно меньше, мы будем постепенно отказываться от самых выгодных условий, т. е. рассмотрим случаи, когда в комплекты по 40 штук укомплектованы 1080, 1040, 1000, 960, 920, ... деталей. Первый и второй случаи оказываются неосуществимыми, так как мы не сможем получить оставшиеся детали в надлежащих комплектах. Третий случай вполне допустим: он предполагает, что прибудет 25 комплектов по 40 деталей и 4 комплекта по 25 деталей. Таким образом, пересылка обойдется в 25 · 10 + 7 · 4 = 278 p. Любой другой вариант, как легко видеть, приведет к бо́льшим расходам, поскольку количество самых выгодных комплектов уменьшится за счет увеличения количества менее выгодных комплектов (по 25 деталей) или за счет появления самых невыгодных комплектов (по 70 деталей).

Ответ. 25 комплектов по 40 деталей и 4 комплекта по 25 деталей.

Глава 19Последовательности и прогрессии

19.1. Сравним n−й и (n + 1)−й члены последовательности (здесь V — знак сравнения):

или после упрощений:

Так как

(n + 1/n)n = (1 + 1/n)n = 1 + n · 1/n + ...,

где многоточиями обозначены некоторые положительные члены, то

(n + 1/n)n> 2 при n> 1.

Следовательно, последовательность убывающая, начиная со второго члена.

19.2. Так как аp, аq, аr и аs — члены арифметической прогрессии, то

aqaр = d(qp), araq = d(rq), asar = d(sr).

Кроме того, aрar = aq², aqas = ar², apasaqar, что отражает условие, в силу которого aр, aq, ar и as образуют геометрическую прогрессию. Из первой группы формул имеем

Составим произведение (pq)(rs) и воспользуемся второй группой формул:

что и доказывает сформулированное в условии утверждение.

19.3. По условию

a = a1 + d(m − 1) = u1qm − 1, b = a1 + d(n − 1) = u1qn − 1, c = a1 + d(p − 1) = u1qp − 1.

Составим разности:

bсd(np), са = d(pm), аb = d(mn).

Подставим в левую часть равенства, которое нужно доказать:

После несложных преобразований получим в обоих показателях нули, что и доказывает равенство произведения единице.

19.4. Перейдем в левой части равенства к общему основанию x и сделаем некоторые упрощения:

В последнем равенстве мы воспользовались тем, что b/ac/bq — знаменателю прогрессии, а также тем, что 

19.5. Имеем

Ответ.

19.6. Преобразуем выражение, стоящее под знаком квадратного корня:

После извлечения квадратного корня получим

19.7. Из условия следует, что

а следовательно, (а1a3)² = 0, а1 = а3. Поскольку , то а2 = а1. Таким образом, а1 = а2 = а3. Решим теперь систему уравнений

Первое уравнение можно последовательно преобразовать:

Подставив найденное значение x во второе уравнение системы, получим

Теперь можно найти x:

x = −2 log2y = ½ log2 5.

Ответ.

19.8. Пусть q — знаменатель прогрессии. Тогда по теореме Виета

x1(1 + q) = 3, x1q²(1 + q) = 12, x1²q = A, x1²q5 = B.

Из первых двух уравнений (подстановкой первого во второе) находим q² = 4.

Так как последовательность по условию является возрастающей, то q = 2, откуда x1 = 1, что не противоречит тому, что прогрессия возрастающая.

Из двух вторых уравнений определяем А и В.

Ответ.А = 2, В = 32.

19.9. Пусть x2 = x1q, x3 = x1q². Тогда по теореме Виета, примененной к данному уравнению, имеем

x1 + x1q + x1q² = 7,    x1²q + x1²q² + x1²q³ = 14.

Из первого уравнения получим x1(1 + q + q²) = 7. Это позволяет следующим образом преобразовать левую часть второго уравнения:

x1²q(1 + q + q²) = 7x1q,

откуда x1 = 2/q. Подставим выражение для x1 в первое уравнение, получим

2(1 + q + q²)/q = 7,  т. е.  2q² − 5q + 2 = 0,

откуда

q1 = ½, q2 = 2.

Теперь для каждого из этих двух значений q можно найти x1. При q = 1 получим, что x1 = 4, т. е. прогрессия убывающая. Во втором случае при q = 2 имеем x1 = 1, и прогрессия — возрастающая.

Ответ. 1, 2, 4.

19.10. Из условия следует, что

Произведение n первых членов прогрессии равно

Ответ. √2.

19.11. Пусть а — цифра сотен, d — разность прогрессии. Искомое число делится на пять, если его последняя цифра либо 0, либо 5, т. е. либо а + 2d = 0, либо а + 2d = 5. Чтобы число делилось на девять, сумма его цифр должна делиться на девять. Но поскольку сумма трех цифр может изменяться от нуля до двадцати семи, имеются три возможности:

а + (а + d) + (а + 2d) = 9; 18; 27.

Последнюю возможность отбрасываем, так как число 999 не делится на пять.

Пусть а + 2d = 0. Если аd = 3, то d = −3, а = 6. Получим число 630. Если аd = 6, то d = −6, а = 12, что невозможно.

Пусть теперь а + 2d = 5. Когда аd = 3, получим d = 2, а = 1, что даст число 135. Когда аd = 6, получим d = −1, а = 7, что приводит к числу 765. Поскольку все возможности исчерпаны, задача решена.

Ответ. 630; 135; 765.

19.12. Задачу можно решить, обозначив через x цифру единиц, а через q знаменатель прогрессии. Используя условия задачи, мы придем к двум уравнениям:

100xq² + 10xq  + x − 594 = 100x + 10xq + xq², (x + 1) + (xq² + 1) = 2(xq + 2).

Первое уравнение можно переписать в виде

x(q² − 1) = 6,

а второе — в виде

x(q² − 2q + 1) = 2,   т. е. x(q − 1)² = 2.

Деля первое уравнение на второе, получим

q + 1/q − 1 = 3,   q = 2.

Следовательно, x = 2.

Задачу можно решить перебором, если воспользоваться тем, что цифры числа образуют геометрическую прогрессию, причем цифра сотен больше пяти (так как число больше 594). Можно доказать, что имеются лишь три возможности: 842, 931 и 964. Второе и третье из этих чисел нужно отбросить, так как 931 − 594 ≠ 139 и 964 − 594 ≠ 469. Остается убедиться, что для числа 842 все условия задачи выполнены.

Требование, чтобы числа x + 1, хq + 2, хq² + 1 образовывали арифметическую прогрессию при таком решении, оказывается лишним.

Ответ. 842.

19.13. Пусть в колхозе было n комбайнов, один смог бы убрать весь урожай за x ч непрерывной работы, а при работе по плану все комбайны одновременно находились в поле y ч. Так как все комбайны могут справиться с уборкой за 24 ч, а производительность одного комбайна 1/x, то

24/x n = 1,   т. е. 24n = x.

Если комбайны работают по плану, то, работая вместе, они сделали п1/xy часть всей работы. Кроме этого, первый комбайн работал n − 1 ч, второй n − 2, а (n − 1)−й работал один час. Учитывая все это, получим уравнение

n