Конечно, любой серьезный биолог приведет тысячу аргументов, что это совсем не так, а то и просто зло высмеет меня без всякой аргументации. Ну что ж, такова наша популяризаторская доля. А потому что надо меньше умничать!
Как бы то ни было, сливать клетки мы научились. Но оказывается, мы умеем и многое другое, так что, когда дело доходит до секса, остается лишь применить в новой области уже давно освоенные приемы. Об этом – в следующей главе.
Марков А. Полиплоидность предков эукариот – ключ к пониманию происхождения митоза и мейоза. См.: https://elementy.ru/novosti_nauki/432771/Poliploidnost_predkov_eukariot_klyuch_k_ponimaniyu_proiskhozhdeniya_mitoza_i_meyoza
Марков А. У асгардархей обнаружен сложный актиновый цитоскелет. См.: https://elementy.ru/novosti_nauki/434054/U_asgardarkhey_obnaruzhen_slozhnyy_aktinovyy_tsitoskelet
Gross J., Bhattacharya D. Uniting Sex and Eukaryote Origins in an Emerging Oxygenic World. Biology Direct. 2010. 5: 53.
Markov A., Kaznacheev I. S. Evolutionary Consequences of Polyploidy in Prokaryotes and the Origin of Mitosis and Meiosis. Biology Direct. 2016. 11: 28.
Moi D., Nishio S., Li X., et al. Discovery of Archaeal Fusexins Homologous to Eukaryotic HAP2/GCS1 Gamete Fusion Proteins. Nature Communications. 2022. 13(1): 3880.
Rodrigues-Oliveira T., Wollweber F., Ponce-Toledo R.I., et al. Actin Cytoskeleton and Complex Cell Architecture in an Asgard Archaeon. Nature. 2023. 613(7943): 332–339.
Rosenshine I., Tchelet R., Mevarech M. The Mechanism of DNA Transfer in the Mating System of an Archaebacterium. Science. 1989. 245(4924): 1387–1389.
Глава двадцать седьмая, в которой появляется слово «парасексуальный»Секс до секса
Чем точно не может похвастаться наш рассказ, так это систематизмом изложения: например, уже много страниц назад впервые мелькнуло слово «мейоз», но пока еще не рассказано, что же это такое. Рекомбинация упомянута в третьей главе, сейчас у нас уже двадцать седьмая, а схемы рекомбинации все еще не нарисованы. Ну и вот совсем вопиющий случай: так и не перейдя к рекомбинации и мейозу, я вздумал упомянуть о парасексуальном процессе. Ни один здравомыслящий биолог не стал бы располагать факты в таком порядке. А мы будем, потому что терять уже нечего. К тому же мы пытаемся понять, как наши предки пришли к сексу, и нельзя исключать, что они тоже двигались по этому пути вопреки всякой логике и, возможно, тоже начали с парасексуального процесса.
В прошлой главе мы выяснили, что научиться сливать свои клетки эукариотам было, видимо, совсем несложно: все необходимое досталось им в наследство от архейного родителя. Следуем дальше: оказывается, сливать ядра (это называется кариогамия) – тоже не бином Ньютона. А когда ядра сольются, в них произойдет рекомбинация.
В студию возвращаются два сорта плесени Aspergillus nidulans, которые в прошлой главе слили свои клетки, чтобы избежать голодной смерти. Напомню: одна плесень была с желтыми спорами и не умела сама синтезировать аминокислоту триптофан, а вторая – с белыми спорами и не могла синтезировать аргинин. Тем не менее, когда мы посадили их вместе на среду без аргинина и триптофана, у нас выросли колонии со смешанными бело-желтыми спорами – дикарионы, в которых после слияния клеток перемешались ядра двух наших грибков. Колонии росли на бедной среде потому, что два типа ядер могли совместно обеспечивать потребности гриба в аминокислотах. Однако ни белые, ни желтые споры-конидии не прорастали: в споре-то ядро только одно, а поодиночке они справляться так и не научились.
Однако, если смыть водой все-все споры с таких колоний и упрямо размазать их по бедной среде, кое-что все-таки вырастет. Кое-что не с белыми, не с желтыми, а с зелеными спорами, как у дикого гриба (и белые, и желтые споры – это мутанты). И эти споры будут заметно крупнее обычного, отчего колонии плесени приобретают красивый, чуть дымчатый оттенок. Кто это такой у нас тут вырос? А это диплоид! Где-то там, в глубине дикариона, два ядра слились в одно. Это не секс: не будем углубляться в тонкости, но слились они не так, как это делается при сексе, а просто между делом. В этих новых диплоидных ядрах каждая мутация из тех, что были у родителей, компенсирована здоровой копией гена в наборе, полученном от другого родителя. Поэтому нашему диплоиду не нужен для роста ни аргинин, ни триптофан, споры у него вполне обычного для этой плесени зеленого цвета, и они легко прорастают на бедной среде, потому что хотя ядро в них по-прежнему одно, но в этом ядре уже есть двойной набор хромосом со всеми необходимыми генами. Итак, для некоторых эукариот сливать ядра клеток – тоже не слишком хитрый фокус.
Теперь сделаем еще один шаг. Подвергнем нашего диплоида небольшой неопасной процедуре: посадим иголочкой несколько спор на питательную среду, куда добавлен вредный яд, мешающий хромосомам нормально расходиться при делении клеток. Сначала мы ничего не увидим: гриб просто не сможет расти, потому что при каждой попытке поделиться его ядра будут терять хромосомы. Но рано или поздно в какой-то части гриба все лишние хромосомы диплоида будут потеряны – он снова станет гаплоидом. И тогда мы увидим растущий сектор колонии плесени с зелеными, или белыми, или желтыми спорами. Возможно, там будут, к примеру, желтые сектора, нуждающиеся для роста в аргинине, но не в триптофане.
И тут вы – если вы генетик – захлопаете в ладоши от радости. Дело в том, что гены trpC, argC и yB находятся на одной (а именно восьмой) хромосоме нашего гриба. И если у этих потомков, в отличие от родителя, совместились признаки «желтый» – «не нуждающийся в триптофане» – «нуждающийся в аргинине», это значит, что в восьмой хромосоме случились события рекомбинации. Гены родителей перетасовались между собой. При этом ни малейшего секса там не было и в помине, не было и мейоза.
Возможно, именно так в 1954 году захлопал в ладоши итальянский генетик Гвидо Понтекорво (1907–1999), работавший в шотландском городе Глазго. То, что он открыл, назвали «парасексуальным процессом» – это такой секс без секса, то есть рекомбинация в неполовых, соматических клетках. Понтекорво понял, что это открывает путь к генетическому исследованию таких объектов, которые заниматься сексом никак не заставишь, вроде культур клеток растений или животных. Заметим в скобках, что вот такую произошедшую не вовремя рекомбинацию называют митотической, в отличие от обычной – мейотической. Это название вносит небольшую путаницу, потому что мейотическая рекомбинация действительно привязана к мейозу, а вот митотическая происходит когда угодно, только не во время митоза. Впрочем, не будем придираться к общепринятой терминологии.
Гвидо Понтекорво сделал это открытие, работая в Университете Глазго, на углу Черч-стрит и Думбартон-роуд, – позже здание отделения генетики получило имя «Понтекорво-билдинг». Работал в нем некоторое время и автор этих строк. Из архитектурных особенностей запомнились узкие окна под потолком лаборатории, в которые никак невозможно было увидеть ничего, кроме серого шотландского неба. Впрочем, в технологических перерывах можно было выйти наружу и прогуляться по берегу быстрой речки Кельвин. Поначалу мне показалось ужасной безвкусицей назвать речку в честь знаменитого физика. Потом выяснилось, что это как раз физик Уильям Томсон получил имя речки, омывающей стены родного университета, когда удостоился баронского титула за научные заслуги.
Не могу не упомянуть еще одну достопримечательность «Понтекорво-билдинг»: лифт системы «патерностер», представляющий собой вереницу кабинок, которые движутся без остановок на этажах. В них полагалось впрыгивать на ходу, что особенно весело, если у вас в охапке какой-нибудь нескладный и хрупкий научный прибор, а навстречу из лифта прыгает девушка с полной корзиной баночек с дрозофилами. На инструктажах по технике безопасности аспирантам объясняли, что, если вы не успели соскочить на верхнем или нижнем этаже, ничего страшного, складывающиеся стены кабинки вас не раздавят, однако этот сюжет у многих присутствовал в ночных кошмарах. Пару лет назад здание «Понтекорво-билдинг» было снесено ввиду ветхости и крайнего неудобства, но в 1995-м этот бастион большой науки был еще неколебим.
Сам Понтекорво к тому моменту уже давно проживал в Италии, однако в один прекрасный день восьмидесятивосьмилетний классик все же посетил свою бывшую лабораторию. Мне было поручено рассказать мэтру, что мы вообще там делаем и куда зашла основанная им (и впоследствии заброшенная) область науки. Этот день я вспоминаю со стыдом.
Самонадеянный постдок из далекой России построил свою экскурсию в стиле Дня открытых дверей для старшеклассников: «Это слишком долго объяснять, но посмотрите, какие красивые штучки». Профессор Понтекорво ходил за мной по лаборатории и благосклонно кивал. А потом задал пару вопросов. Если вы доживете до восьмидесяти восьми лет, дай вам бог уметь задавать такие вопросы, мгновенно ставящие на место зарвавшихся дилетантов. Позавидовать Гвидо Понтекорво можно и еще кое-в-чем: четыре года спустя, на девяносто втором году жизни, он погиб, сорвавшись с тропы во время горной прогулки в Альпах.
Впрочем, вернемся к повествованию о рекомбинации. Из этой истории – я имею в виду историю про рекомбинацию у соматических диплоидов аспергилла – можно сделать вывод, что сливать два ядра в одно и заниматься рекомбинацией живые организмы могут и без всяких специальных устроений, даже не задумываясь о сексе. Всякие научные сложности, рассказанные выше, – специальный подбор родителей с разными мутациями, создание гетерокариона, выделение диплоида и его последующая гаплоидизация – понадобились здесь только для того, чтобы генетик мог заметить на своих чашках Петри, что это произошло. Но, видимо, рекомбинация может происходить и в самых обычных клеточных ядрах. Просто там ее будет сложно наблюдать, потому что тогда рекомбинировать будут две одинаковые молекулы ДНК.