Но Ибрагимов сказал спокойно:
- Вот, еще вам один Бехаскера Чарж нашелся. Ну, ну, выходите сюда. Убедите нас.
Коля направился к доске.
- Дай-ка, - на ходу попросил у гимназиста, сидевшего за первым столом, большой треугольник из толстой бумаги. Затем, оторвав с боков два уголка и приложив их слева и справа к верхнему так, что получился один развернутый угол, поднял их над головой. - Смотрите!
- Выше! - сказал Ибрагимов. - Поднимите выше.
Пусть видят все... Вам, понятно? - спросил он учеников, И те, перебивая друг друга, закричали:
- Ясно! Понятно!
- Развернутый угол равен двум прямым.
- Доказал!
Ибрагимов помахал им рукой.
- Тише, тише, господа. Вы на уроке. Садитесь, Лобачевский. Очень хорошо. Значит, по-вашему, доказывать излишний труд? Все тут ясно нам и очевидно? - спросил он Колю.
- Д-да... - произнес тот с некоторой запинкой.
Лукавый огонек, вспыхнувший в глазах учителя, вдруг дал почувствовать Коле, что его доказательство не совсем достоверно.
- Так вот, господа, - продолжал Ибрагимов, - древние индийские математики поступали точно так же. Пренебрегая теоретическими обоснованиями, они делали чрезвычайно выразительные чертежи, а вверху над ними писали слово, только что произнесенное Лобачевским: "Смотри!"
Так .цоступал индусский математик двенадцатого века Бехаскера Чарж. В своей книге "Лилавати" ["Лилавати" - прекрасная (инд.)] он доказывал теорему Пифагора двумя чертежами, считая, что иного доказательства ей не требуется.
Ибрагимов помолчал, прошелся по классу, как бы желая дать ученикам время подумать над сказанным.
- Чтобы оценить по достоинству значение доказательств, - обратился он с вопросом, - не задумывались ли вы, в чем их суть? А стоило бы... Как же можно всем нам отрицать роль этих доказательств или роль умозаключений, если не знать, что это такое? Благоразумно ли, например, отказаться от какой-то, может быть, и вкусной, и здоровой пищи по той причине, что вы ее никогда не пробовали?..
В четвертом веке до рождества Христова, - продолжал Ибрагимов, Аристотель высказал утверждение, по тому времени очень смелое. Он сказал первое: что Земля, при всех положениях, во время лунных затмений отбрасывает на Луну круглую тень. Второе: что, несомненно, такую тень отбрасывает при всех положениях только шар. Следовательно, Земля - шар. Из двух достоверных суждений Аристотель, таким образом, вывел умозаключение об истинности своего утверждения или, другими словами, доказал шаровидность Земли. Вот что значит логическое доказательство.
Объяснения учителя покоряли стройностью суждений.
В них не было ничего лишнего. Все продумано, логично.
Да и сами по себе доказательства стали более интересными.
- Теперь мы вернемся к индусам и примеру Лобачевского, - продолжал Ибрагимов. - Он пытался убедить нас одним словом: "Смотрите!" Но можно ли сказать, что в данном случае не было доказательства? Конечно же нет.
Просто, не рассуждая, глядя на показанную им фигуру из трех уголков треугольника, мы ни к какому выводу не пришли бы. На самом же деле вспомнили, что развернутый угол равен двум прямым. Это было наше первое суждение. Затем признали, что эта фигура из трех уголков представляет собой развернутый угол. Это было второе суждение. Отсюда вывели заключение, что раз так, то сумма внутренних углов треугольника равна двум прямым. Как видите, простого созерцания было недостаточно. Мы смотрели, рассуждали. Кстати... - Учитель прошелся по классу и вскоре остановился у скамейки Лобачевского. - Кстати, господа, - повторил он с лукавой улыбкой, - обращаю внимание ваше на тот факт, что "немое" доказательство Лобачевского, такое внешне эффектное, на самом деле не совсем достоверно и бесспорно.
Ученики зашушукались, но Ибрагимов будто и не заметил этого.
- Посудите сами: почему же мы уверены, что после такого сложения уголков треугольника две их крайние стороны составят непременно продолжение одна другой, образуя развернутый угол? - спросил он у всех.
- Так это же видно!
- Бесспорно!
- Ясно! - с увлечением закричали с разных сторон.
- А вы забыли, что каждое геометрическое утверждение, если это не аксиома, должно быть непременно доказано, хотя б и казалось оно всем очевидным? - спросил Ибрагимов. - "Очевидно" - понятие обманчивое. Одному очевидно, другому нет. Помните, как долго люди считали очевидным, что Солнце движется вокруг Земли. Все ведь своими глазами видели. Вот вам и "очевидно". Значит, и для суммы углов треугольника тоже требуется до-ка-затель-ство, - договорил он последнее слово раздельно, по слогам.
- Надо смерить углы транспортиром, - сказал ему Лобачевский. - Вот и все убедимся.
- Превосходно, - кивнул Ибрагимов. - Каждый, у кого начерчен треугольник, измерьте углы, затем, сложив их, скажите результат... Лобачевский, пожалуйте к доске. Будем записывать.
Гимназисты завозились. Ибрагимов, устав от ходьбы, уселся на свой стул и внимательно стал следить, с каким увлечением все кинулись выполнять задание.
Через несколько минут раздались удивленные голоса:
- У меня 181°!
- У меня 179°! Это почему?
- А вот у меня 180°30'!
Коля терпеливо стучал мелом: колонки цифр удлинялись, вот уже чуть ли не вся доска ими занята.
Ибрагимов повернулся к нему:
- Ну, Лобачевский, готов результат?
- Нет еще. - Коля лихорадочно подсчитывал. - Сейчас кончу. Как же так? Что-то между 178° и 181°, - удивился он.
- То-то же, - улыбнулся учитель. - Значит, глаза у всех разные?
Коля молчал.
- Убедились? - добродушно спросил Ибрагимов. - И не смущайтесь. Это вас не глаза подвели, а карандаши, линейки, транспортиры - словом, ошибки построения. Эти ошибки неизбежны, если бы даже измерили вы десятки треугольников. Важно и другое. Нам надо знать не только то, что сумма внутренних углов треугольника равна двум прямым, но также и то, почему она должна быть именно такой. Измерительное, опытное доказательство нам этого не объясняет. Ясно? Это лишь грубое и приблизительное обоснование теоремы.
- Ошибка невелика, - заметил Коля и, не ожидая разрешения учителя, вернулся на свое место.
- Как? И это все, что вы поняли? - вспыхнул Ибрагимов.
Класс притих в напряженном ожидании - что же будет? Учитель поднялся, молча подошел к форточке и раскрыл ее. Свежая струя воздуха дохнула в комнату.
Гимназисты неодобрительно покосились на Колю. Тот сидел, понурив голову, и никого не видел.
Овладев собой, учитель вернулся на кафедру.
- Лобачевский, - проговорил он сдержанным голосом. - Хорошо, если человек уверен в своих способностях, не допуская себя до гордыни. Запомните, не придает она силу душевную. Напротив, затемняет сознание. Человек от сего лишается необходимой способности видеть свои недостатки, свои слабые суждения, теряет уважение к суждениям других.
Ибрагимов снова прошелся по классу и, вернувшись к доске, продолжал:
- Вы сказали - "ошибка невелика". Но знаете ли вы, что если бы сумма внутренних углов треугольника не была совершенно точно равна двум прямым, то вся геометрия Евклида оказалась бы неправильной? "Теорема эта равносильна аксиоме параллельности или пятому постулату Евклида", - писал иранский математик Абу-Джаафар Мухаммед Насирэддин Туей в своей книге "Введение к геометрии". Опираясь на эту теорему, вычисляют площади земельных участков, измеряют недоступные высоты и расстояния, составляют планы городов и географические карты. Все это стало бы невозможным, если бы сумма этих удивительных углов была подвержена малейшему колебанию.
Класс молчал. Слышно было, как поскрипывает на ветру открытая форточка. Гимназисты с уважением, даже с некоторым страхом рассматривали лежащие перед ними на столах треугольники, точно загадочные фигуры - вместилища таинственных законов. Урок затягивался, но это%ге никто не замечал.
- Ученые глубокой древности, - рассказывал учитель, - придавали особое значение этой простейшей геометрической фигуре - треугольнику. Они считали его чуть ли не основным началом всех тел, надеялись, изучив его свойства, познать законы Вселенной.
Второгодник Овчинников, толкнув соседа, шепнул:
- Из-за какого-то простого треугольника и столько разговоров.
- Балбес ты, - сказал ему сосед. - Если тебе слушать не хочется - не мешай другим.
Учитель в это время взял большой пятиугольник из деревянных планок, скрепленных по углам гвоздиками.
Чтобы всем было видно, понес его меж рядами скамеек.
- В чем же секрет треугольника, столь поразивший древние умы? продолжал он. - Смотрите, я растягиваю этот многоугольник в ширину, теперь - в длину, и он легко меняет форму. Выкинем одну планку - и четырехугольник подвижен: то квадрат получается, то ромб... Еще выкинем одну планку. Теперь это уже треугольник. Попробуйте изменить его форму. Перекосить... Вот, возьмите, - предложил он Овчинникову. - Ну, как? Выходит?
- Нет, не выходит, - сказал озадаченный второгодник. - Жесткий. Разве что сломать его...
- Стойте, стойте! - испугался Ибрагимов, схватив ученика за руку. - Не жмите... Жесткий!.. Это и есть чудесное свойство треугольника. Его используют и в технике и в строительстве. Мосты, крыши, дома - всюду в них вы найдете укрепляющие треугольники. Но, кроме того, запомните, что любой многоугольник можно разбить на треугольники. Не удивительно, что древние выделяли треугольник из всех других фигур.
- Вот оно что! - сказал сосед Овчинникову. - А ты говоришь: из-за какого-то... Слушай.
- Теперь вам понятно, - продолжал учитель, - что необходимо доказать нашу теорему, и доказать со всей математической строгостью... Итак, утверждаем: сумма внутренних углов треугольника равна 180°...
Учитель, вернувшись к доске, быстро начертил треугольник и начал доказывать теорему. Торопливо заскрипели перья в классе...
- Надеюсь, господа, - подводил итог учитель, - вы сами убедились в необходимости математического доказательства. С его помощью геометрические истины обобщают и приводят в стройную научную систему, в которой раскрываются все внутренние связи между ними. Вот почему итальянский ученый, художник и поэт Леонардо да Винчи утверждал, что никакое человеческое исследование не может назваться настоящим знанием, если не прошло через математические доказательства. Замечу, однако, что для приобретения настоящего знания большое значение имеет и опытное доказательс