Для реализации этого принципа уже на этапе эскизного проектирования разрабатывается программа сертификации, которая охватывает все виды работ. Зарубежные авиационные фирмы относят разработку и развитие программы сертификации к серьезной инженерной работе, выполняемой проектировщиками и специальной службой (подразделением, отвечающим за координацию работ по сертификации).
Подготовка к сертификации ведется с начала проектирования, и к летным испытаниям она достигает более 50 % всего объема. При этом темпы получения необходимой документации резко увеличиваются на втором году создания самолета (когда уже действуют все стенды) и сохраняются около года на всем протяжении летных испытаний. Характерной особенностью работ на всех этапах разработки является их сертификационная направленность, ориентация на последовательное заполнение пунктов таблиц соответствия, т. е. доказательство (методами анализа, статистическими данными, рабочей технической документацией, результатами наземных и летных испытаний) соответствия характеристик ЛА нормам НЛГ.
Программа «сквозной» сертификации должна включать создание моделей, стендов и других установок; разработку или уточнение методов исследований; проведение моделирования, лабораторных, стендовых и летных испытаний с оценкой соответствия самолета требованиям НЛГ; разработку и реализацию технологии летных испытаний; оформление доказательной документации и таблиц соответствия, заключений НИИ и в завершение – представление материалов в Авиарегистр межгосударственного авиационного комитета (АР МАК) для получения сертификата летной годности.
Следует особо отметить, что важнейшей процедурой реализации принципа «сквозной» сертификации является верификация, которая в мировой практике находит все более широкое применение, главным образом, при проверке и оценке результатов проектно-конструкторских работ (выполняемых соответствующими конструкторскими подразделениями) на начальном этапе создания новой техники. Данная процедура является практически единственным способом подтверждения истинности и правильности принятых технических решений в условиях большой степени неопределенности, имеющей место на начальных этапах проектирования, когда еще нет изготовленных элементов проектируемых СТС и их испытания еще невозможны. Верификации подлежат вновь разработанные конструкции элементов СТС и процессы их функционирования; мероприятия по повышению качества изделий; оценка результатов реализации этих мероприятий и т. д.
Верификация (в зависимости от характера, особенностей и вида оцениваемых технических решений) может основываться на аналитических исследованиях; расчетах; математическом и физическом моделировании; тщательном анализе исходных данных, проектно-конструкторской, технологической и эксплуатационной документации; сравнении с образцами-аналогами и т. д.
По результатам верификации, по которым выявлены те или иные несоответствия, разрабатываются и реализуются предупреждающие мероприятия, охватывающие различные аспекты деятельности ОКБ, направленные на устранение выявленных при верификации несоответствий (дефектов конструкции и др.) и, тем самым, на повышение безопасности и надежности сложных технических изделий. Для доказательства эффективности предупреждающих мероприятий они, в свою очередь, также подвергаются процедурам верификации.
Документированные результаты верификации используются при завершающей сертификации изделий авиакосмической техники в качестве доказательной документации наряду с результатами наземных и летных испытаний, статистическими данными о качестве изготовления и эксплуатации изделий, результатами исследования отказов и оценкой эффективности мероприятий по повышению безопасности и надежности, разрабатываемых и реализуемых на последующих стадиях создания СТС.
К следующему этапу «сквозной» сертификации, проводимой на начальных этапах проектирования, можно отнести лаборатор-но-стендовые сертификационные испытания уже изготовленных образцов спроектированных агрегатов, механизмов, узлов и систем создаваемых сложных технических изделий.
Учитывая сформировавшуюся в отечественной ракетно-космической промышленности и полностью оправдавшую себя ведущую роль наземной отработки для подтверждения характеристик и свойств создаваемых изделий ракетно-космической техники (РКТ), а также требуемого уровня их надежности и безопасности (как необходимых атрибутов сертификации), представляется вполне логичным и целесообразным усиление роли лабораторно-стен-довой отработки (ЛСО) при реализации принципа «сквозной» сертификации изделий РКТ. Суть предлагаемого подхода заключается в использовании для составления матрицы выполнения требований результатов автономных и комплексных лаборатор-но-стендовых испытаний уже изготовленных образцов спроектированных агрегатов, механизмов, узлов и систем создаваемых изделий. Следует отметить, что данный подход полностью коррелирует с Положением Федеральной системы сертификации космической техники (ФСС КТ), в соответствии с которым сертификационные испытания изделий РКТ, их систем и элементов, совмещаются с предусмотренными конструкторской и эксплуатационной документацией наземными испытаниями, летно-кон-структорскими и зачетными летными испытаниями.
В развитие вышеуказанного подхода представляется целесообразным приведение в соответствие отечественных требований и норм лабораторно-стендовых испытаний с общепринятыми в мировой практике требованиями и нормами развитой системы сертификационных испытаний, связанной с условиями рыночной конкуренции и жесткой регламентацией качества.
Таким образом, правомерно заключить, что для придания лабораторно-стендовым испытаниям сертификационной направленности, методы и средства проведения лабораторно-стендовых сертификационных испытаний изделий РКТ также должны быть подвергнуты процедурам верификации, т. е. проверке и доказательству (подтверждению) их соответствия требованиям и нормам отечественных и международных стандартов и другой нормативной документации.
В связи с вышесказанным еще на начальном этапе создания изделия должны разрабатываться (с позиций гармонизации с международными нормами и требованиями) методики сертификационных испытаний изделий РКТ и экспериментально-испытательных средств (ЭИС), с помощью которых на этапе ла-бораторно-стендовой отработки (ЛСО) будет осуществляться заполнение значительного объема таблицы соответствия. Данная работа должна быть завершена к концу этапа разработки рабочей документации (РД) и входить в состав доказательной документации при экспертизе РД с целью формирования заключения о ее соответствии (по состоянию) в рамках положения ФСС КТ.
4.2. Федеральная система сертификации ракетно-космической техники научного и народнохозяйственного назначения (ФСС КТ)
ФСС КТ предназначена для проведения как обязательной, так и добровольной сертификации изделий РКТ в соответствии с законами РФ «О сертификации продукции и услуг», «О космической деятельности» и «Положением о Российском авиакосмическом агентстве».
ФСС КТ распространяется на следующие объекты:
• космическую технику, включая космические объекты, наземные и иные объекты космической инфраструктуры научного и народнохозяйственного назначения и их составные части (создаваемые вновь и модифицированные, а также находящиеся в серийном производстве и эксплуатации);
• оборудование, применяемое при создании и использовании космической техники;
• импортируемые компоненты РКТ;
• модели РКТ зарубежного производства, предназначенные для выведения на орбиту с помощью российских ракет-носителей и размещенные на российских космических аппаратах;
• разработку, испытания, производство, эксплуатацию и утилизацию РКТ;
• космические услуги;
• системы качества и производства РКТ;
• испытательные лаборатории (центры);
• экспертов-аудиторов.
Сертификация РКТ осуществляется в целях:
• подтверждения соответствия ракетно-космических комплексов, их составных частей и услуг в области космической деятельности предъявляемым требованиям в случаях, предусмотренных законодательством РФ;
• создания условий для коммерциализации космической деятельности в РФ;
• создания благоприятных условий для страхования космической техники;
• защиты потребителя космической техники от поставки недоброкачественных изделий РКТ;
• контроля безопасности космической техники для окружающей среды, жизни, здоровья и имущества.
Системой сертификации РКТ решаются следующие основные задачи:
• сертификация изделий РКТ, процессов и услуг в области космической деятельности;
• сертификация систем качества РКТ;
• оформление сертификатов на образцы РКТ по завершению процедуры сертификации;
• аккредитация сертифицируемых органов (лабораторий);
• аттестация экспертов – аудиторов системы сертификации РКТ;
• проведение работ по признанию сертификатов по РКТ, выданных органами по сертификации, не являющимися членами ФСС КТ;
• формирование банка данных ФСС КТ и обеспечение функционирования системы информации в области сертификации РКТ;
• надзор за качеством сертифицированной продукции;
• надзор за сертифицированными системами качества производства;
• инспекционный контроль за деятельностью сертификационных органов, испытательных центров (лабораторий);
• разработка и совершенствование нормативно-технической и методической документации по сертификации РКТ, процессов и услуг в области космической деятельности;
• создание и ведение реестра ФСС КТ;
• рассмотрение апелляций по результатам аккредитации, аттестации и сертификации.
В основу работы системы сертификации РКТ положены следующие положения;
• организация ФСС КТ и управление ею Российским космическим агентством;
• контроль за деятельностью системы со стороны Росавиакосмоса и Госстандарта России;
• соблюдение и независимость органов сертификации, аккредитованных при ФСС КТ в установленном порядке, от заказчиков и изготовителей;