Сертификация сложных технических систем — страница 29 из 43

Существующая сегодня экспертиза проектов в основном касается анализа финансового состояния предприятий. При такой экспертизе, как правило, не дается ответ на главный для рыночной экономики вопрос – каков уровень качества и конкурентоспособности выпускаемой или намеченной к выпуску продукции. Одного финансового аудита производства совершенно недостаточно для определения потенциальных возможностей предприятия в организации эффективного производства конкурентоспособной продукции. Особенно это относится к конвертируемым предприятиям, потерявшим государственные заказы и близким к банкротству. В то же время производственный потенциал такого предприятия может быть достаточно высоким для эффективного перехода на выпуск конкурентоспособной продукции гражданского назначения.

Поэтому для объективной оценки целесообразности предоставления проекту бюджетного финансирования или льготного целевого кредитования, а также целесообразности других инвестиций необходимо провести полную экспертизу (рейтинговую сертификацию) производства, реализующего проект, по ряду интегральных показателей:

1) рейтинг основных фондов (оценка состояния основных фондов промышленного производства);

2) рейтинг продукции (оценка соответствия технико-экономических параметров выпускаемой или намеченной к выпуску продукции требованиям на аналогичную продукцию на международном рынке);

3) рейтинг технологических процессов (оценка соответствия применяемых основных технологических процессов параметрам аналогичных передовых зарубежных технологий);

4) рейтинг производства (оценка соответствия производства требованиям обеспечения заданных параметров выпускаемой продукции);

5) рейтинг систем качества (оценка соответствия системы качества предприятия требованиям обеспечения стабильного уровня качества выпускаемой продукции).

Методология оценки основных фондов включает следующие основные составляющие:

1) амортизация, моральный износ и возрастная структура;

2) рыночная стоимость и ликвидность;

3) показатели использования средств (коэффициенты использования оборудования и площадей, фондоотдача);

4) зависимость производственной мощности предприятия от состояния основных фондов;

5) способность обеспечить гибкость производства (возможность быстрого перехода на выпуск продукции, пользующейся спросом);

6) научно-технический потенциал предприятия, т. е. возможность освоения производства наукоемкой конкурентоспособной продукции.

Методология оценки технико-экономических параметров разрабатываемой (осваиваемой) продукции призвана обеспечить получение объективной информации для предотвращения затрат на неперспективные разработки и принятие обоснованных решений по выпуску продукции, конкурентоспособной на внутреннем и внешнем рынках.

Эта методология должна решать следующие основные вопросы:

1) маркетинговые исследования параметров и характеристик аналогов, выпускаемых зарубежными фирмами и потребляемых на различных рынках;

2) выбор методологии и критериев оценки продукции, обеспечивающих наибольшую перспективность при наличии определенных целевых установок;

3) определение базовых характеристик, необходимых для обеспечения конкурентоспособности продукции, проработка их на перспективу;

4) сопоставление коммерческих и технических параметров разрабатываемой (выпускаемой) продукции с требованиями международного рынка на аналогичную продукцию;

5) определение требований (рекомендаций) к разрабатываемой (выпускаемой) продукции, обеспечивающих ее техническую конкурентоспособность на зарубежных рынках.

Методология оценки применяемых (планируемых к применению) технологических процессов необходима для получения ответов на следующие вопросы:

1) наличие и степень близости отечественного или зарубежного аналога;

2) конкурентоспособность на внутреннем и внешнем рынке;

3) возможность экспорта и (или) сокращения импорта продукции в результате реализации технологического процесса;

4) степень готовности технологии для реализации (в том числе необходимость проведения НИОКР, создания технологического оборудования);

5) создание новых материалов, технологии их получения и обработки;

6) создание контрольно-измерительного и испытательного оборудования;

7) создание систем информационного обеспечения;

8) необходимость приобретения импортного оборудования и комплектующих изделий, необходимость подготовки кадров и т. д.;

9) удельный вес затрат на НИОКР в общих затратах на разработку и реализацию технологии;

10) социальная значимость реализации технологии и т. д. Методология оценки соответствия производства требованиям

обеспечения задаваемых технико-экономических параметров выпускаемой продукции должна решать следующие задачи:

1) оценка соответствия существующей организационной структуры производства требованиям выпуска заданной продукции;

2) оценка соответствия существующей конструкторской и технической документации требованиям национальных и международных стандартов;

3) оценка инженирингового обеспечения выпуска заданной продукции;

4) оценка метрологического обеспечения производства продукции;

5) оценка стабильности существующих технологических процессов;

6) оценка системы технического обслуживания, планового и внепланового ремонта основного оборудования;

7) оценка кадрового обеспечения производства планируемой к выпуску продукции.

Методология оценки системы качества исходит из необходимости проверки ее составляющих на следующих этапах:

• маркетинг, поиск и изучение рынка;

• разработка конструкции и технологических процессов;

• материально-техническое снабжение;

• технологическая подготовка производства;

• производство;

• контроль и испытания продукции;

• упаковка и хранение;

• реализация и распределение продукции;

• эксплуатация продукции у потребителя;

• утилизация после использования.

При оценке эффективности функционирования системы качества проверяется выполнение следующих требований международных стандартов ИСО 9000:

• системы регистрации дефектов;

• идентификации и прослеживаемости каждой единицы продукции;

• системы причинно-следственного анализа дефектов на основе современных методов статистического управления качеством;

• учета затрат на обеспечение качества продукции;

• системы управления качеством продукции на основе разработки и реализации комплекса конструкторско-технологических и организационно-технических мероприятий по обеспечению качества.

Указанные задачи технической экспертизы и технического аудита предприятий должны быть возложены на систему сертификации, действующую в соответствующей отрасли промышленности.

6.2. Принцип «сквозной» сертификации на примере сертификации самолета

6.2.1. Общие принципы проведения работ по сертификации самолета

Отечественный и зарубежный опыт свидетельствует о том, что сертификация является эффективным средством повышения качества и безопасности гражданских самолетов, а также способствует сокращению сроков доводки и летных испытаний при условии, если сертификация проводится с начала проектирования на всех этапах создания самолета и включает, наряду с проведением летных испытаний, в значительных объемах моделирование и стендовые испытания. При этом имеется в виду, что для обеспечения отработки и сертификации самолета предусматривается проведение всесторонних исследований аэродинамики самолета в аэродинамических трубах, исследований прочности и выносливости конструкции самолета, работоспособности и характеристик агрегатов отдельных систем и комплексов, а также их стыковки и взаимосвязи с характеристиками самолета на стендах. В этом случае еще на ранних стадиях могут быть вскрыты недостатки, в том числе несоответствие требованиям НЛГ, которые легче устранить до или в процессе постройки самолета, чем во время летных испытаний.

Такой подход к сертификации широкофюзеляжных самолетов Боинг-747, DC-10 и L-1011 позволил провести их летные испытания по доводке и сертификации за один год. Опубликованные материалы по созданию самолета Боинг-747 говорят о том, что общая программа сертификации его была составлена с начала проектирования и включала поэтапное проведение работ по мере окончания каждого раздела проекта (рис. 6.1). Фирма «Боинг» относит разработку и развитие программы сертификации к серьезной инженерной работе, выполняемой проектировщиками и руководимой специальной службой (подразделением, отвечающим за координацию работ по сертификации). Фирма разработала руководство по сертификации на основе опыта создания предыдущих самолетов и контактов с заказчиком и FAR.

Программа работ по сертификации самолета Боинг-747 включает создание моделирующей и стендовой базы, проведение наземных и летных испытаний. Общая программа испытаний, включая предварительную, рассчитана более чем на четыре года.


К числу наиболее важных видов испытаний для обеспечения и проведения сертификации самолета Боинг-747 относятся:

• аэродинамические исследования в трубах (в значительных объемах), в том числе с использованием трубы-камеры для создания условий обледенения – около 20 000 «трубных» часов на 100–150 моделях;

• исследования прочности конструкции на стендах объемом до 500–600 образцов натурных конструкций;

• использование математического моделирования;

• проверка примерно на 40 стендах работоспособности и надежности всех систем (испытания до появления отказов);

• отработка и оценка системы управления и особенностей управления на натурном стенде «Железная птица» при нормальных условиях и имитация отказов системы управления, систем гидравлики и электропитания (стенд создан за год до начала летных испытаний и очень интенсивно использовался);

• отработка на «инженерном» тренажере с участием летчика приемов пилотирования, в том числе при отказах двигателя, отработка автоматической системы пилотирования (кабина тренажера снабжена системой индикации и средствами визуализации, действующими на протяжении всего полета. Тренажер создавался параллельно с проектированием самолета и широко применялся на стадии проектирования и в процессе летных испытаний);

• испытания на летающих лабораториях, в частности на LLB-52;

• летные испытания пяти самолетов Боинг-747 с темпом nocтупления один самолет в три месяца. Объем летных испытаний cocтавил 1400 часов за десять месяцев при среднем налете 40 летных часов в месяц.

Процесс сертификации самолетов Боинг-747 и L-1011 зависит от степени готовности сертификационной документации. Подготовка к сертификации ведется с начала проектирования и к началу летных испытаний она достигает более 50 % всего объема. При этом темп получения необходимой документации резко увеличивается на втором году создания самолета (когда уже действуют все стенды) и сохраняется на всем этапе летных испытаний, продолжающихся около года. Характерной особенностью работ на всех этапах разработки является их сертификационная направленность, ориентация на последовательное «закрытие» пунктов таблиц соответствия, т. е. доказательство (методами анализа, статистическими данными, рабочей технической документацией, результатами наземных и летных испытаний) соответствия характеристик ЛА нормам летной годности самолета (НЛГС).

Сертификация представляет большой интерес и как одна из форм системного подхода к оценке самолета. Этому способствует очень важная особенность построения НЛГС, заключающаяся в том, что требования к различным характеристикам самолета или функциональным системам взаимосвязаны между собой, что, в значительной мере, определяет комплексность оценок соответствия.

Основными видами исследований при подтверждении соответствия требованиям НЛГС является моделирование, стендовые и летные испытания, а также их сочетание. Типичным примером методов, основанных на комплексном применении моделирования и летных испытаний, может служить оценка соответствия общим требованиям летной годности, т. е. исследование вероятности возникновения в полете особых ситуаций различной опасности в результате сочетания отказов функциональных систем, некоторых особенностей самолета, ожидаемых условий эксплуатации и разброса параметров пилотирования. Схема таких исследований приведена на рис. 6.2.


Рис. 6.2

Чрезвычайно важную роль в отечественной практике сертификации играют методы летных испытаний, основанные на объективном получении широкого спектра информации и летной оценке экипажа. Летные испытания широко применяются в нашей практике при создании и сертификации самолета и включают исследования на стендах, летающих лабораториях и сертифицируемом самолете. Одной из важных задач при этом является (как элемент сертификации агрегатов и систем) разработка нормативов типовых испытаний агрегатов и систем. Внедрение перспективных технических требований потребовало новых материалов и покрытий, существенного пересмотра порядка и методов испытаний опытных образцов авиационной техники, их отработки перед установкой на самолеты, расширения и развития испытательной базы для проведения полноценной отработки изделий, совершенствования информационного обеспечения новых разработок, специализации производства. Подтверждение показателей технического уровня бортового оборудования осуществляется на этапе испытаний в процессе проведения ОКР. Для практического воплощения этого принципа головными НИИ совместно с ОКБ были разработаны и утверждены нормы типовых испытаний агрегатов и систем бортового оборудования на надежность.

В настоящее время в ряде случаев показатели надежности бортового оборудования на этапе ОКР подтверждаются расчетными значениями. Нормы испытаний требуют подтверждения значений показателей надежности бортового оборудования на этапе ОКР до 0,6 расчетного, что позволит сократить сроки летных испытаний самолетов до 2–3 лет вместо 6–7 лет при существующей практике. Все это может быть обеспечено за счет проведения стендовых эквивалентно-циклических испытаний (ЭЦИ) с комплексным воспроизведением нагрузок, максимально приближенных к реальным условиям эксплуатации (РУЭ) оборудования самолетов и вертолетов (рис. 6.3).

Накопленный опыт разработки, корректировки и реализации перспективных технических требований изделий отрасли показывает, что эти работы следует в дальнейшем еще более интенсивно развивать и совершенствовать в направлении автоматизации и методического обеспечения решаемых задач в процессе разработки. В этом направлении в отрасли уже есть определенный задел, но и в дальнейшем этим работам будет уделяться пристальное внимание.

Для подтверждения соответствия характеристик изделий перспективным техническим требованиям введена отраслевая аттестация (сертификация) агрегатов и систем бортового оборудования.


Разработан комплекс НД, устанавливающий порядок проведения работ в отрасли по повышению технического уровня изделий AT и порядок отраслевой аттестации бортового оборудования ЛА и двигателей.

Эти документы определяют организацию и порядок работ в отрасли, функции участников работ и их взаимодействие, в них предусматривается постоянный контроль головного тематического института за разработкой, испытаниями и эксплуатацией бортового оборудования и выдача аттестата годности бортового оборудования к применению на ЛА.

Практика и опыт работы показывают, что с целью подготовки оптимальных решений в процессе формирования и корректировки перспективных технических требований изделий отрасли необходим комплекс нормативно-технических документов, устанавливающий критерии, показатели, методы оценки, оптимизации и прогнозирования технического уровня изделий, включая методы оптимизации параметрических рядов, показателей надежности, ресурса, весовых характеристик и т. д. применительно к определенным типам ЛА.

В этой разработке широко используется передовой зарубежный опыт – стандарты ИСО 9000 и др.

Все это может быть обеспечено за счет опережающих на основе перспективных разработок изделий AT (рис. 6.4) технических требований (нормативов технического уровня, необходимого количества одновременно испытываемых образцов оборудования, совершенствования испытательных комплексов с воспроизведением нагрузок, максимально приближенных к реальным условиям эксплуатации оборудования в составе финальных изделий).

Реализация нормативов типовых испытаний на надежность не может быть успешно решена без широкого внедрения стендовых испытаний (ускоренных, эквивалентно-циклических, усеченных и т. д.) и оснащения лабораторно-экспериментальной базы стендами с комплексными взаимодействиями. Практика проведения эквивалентно-циклических испытаний Минавиапрома подтвердила высокую сходимость (до 90 %) результатов испытаний с данными эксплуатации, а также упреждение отказов в эксплуатации до 85–97 % и снижение рекламаций до двух.

6.2.2. Особенности летных испытаний

Летные испытания, играющие весьма важную роль в отечественной практике для оценки основных характеристик ЛА и их соответствия требованиям наземных испытаний и исследований,


как правило, за рубежом имеют значительно меньшее значение. Действительно, осуществление на практике принципа «испы-тывай все перед полетом» дает возможность до 80 % характерис-тик получить на земле. Стоимость 1 ч летных испытаний почти в 100 раз больше 1 ч наземных, поэтому покупатели, заплатив немалые акцепты, ждут получения самолетов для начала при-быльной эксплуатации, рынок испытывает давление со сторо-ны конкурентов. Воистину: «время – деньги».

В этих условиях период летных испытаний не рассматривается как созидательный, познавательный этап, а лишь как контрольный, зачетный, открывающий путь для получения дивидендов авиакомпа-ниями и фирмами-производителями. В этом видят основной смысл летных испытаний, и поэтому их стремятся провести как можно быстрее, сосредоточившись лишь на тех видах, которые с доста-точной уверенностью нельзя смоделировать в наземных условиях.

Рассматривая летные испытания большей частью как потерян-ное время, тем не менее фирмы признают их несомненно важ-ным моментом подтверждения в реальных условиях высоких характеристик ЛА, осуществляя второй основополагающий прин-цип – «летай, перед тем как продавать». Как правило, результа-ты летных испытаний дают лишь 5–7 % разброса с наземными испытаниями и расчетными данными.

Основные особенности проведения летных испытаний состоят в следующем:

• основной акцент ставится на крайние режимы по безопас-ности и надежности для максимального «открытия» областей безопасной эксплуатации и подтверждения расчетных данных (в первую очередь, большие углы, флаттер, посадка на боль-ших углах, обледенение и др.);

• по требованиям FAA (Федеральные авиационные власти США) и покупателей проводится демонстрация фактических за-пасов по надежности, прочности и безопасности (экстренное торможение на взлете, покидание пассажирами аварийного са-молета и др.) по сравнению с расчетными нормами;

• наземные демонстрации эксплуатационной технологичное-ти проводятся с хронометражем операций;

• резко сокращено время летных испытаний (до 911 ־ меся-цев) с одновременным повышением их качества.

Сокращение времени летных испытаний осуществляется за счет:

• проведения основного объема испытаний (80 %) в наземных условиях, максимально приближенных к эксплуатационным, и, самое важное, сертификации по их результатам;

• организации, планирования и управления летными испытаниями как части комплексной программы производства самолетов в целях повышения экономической эффективности разработки в целом;

• одновременного использования нескольких самолетов (до 5) с четким разделением целей и объемов испытаний по каждому;

• использования нескольких аэродромов с различными климатическими условиями (при интенсивном налете каждого самолета 35–40 летных часов в месяц);

• интенсивного (с циклом 3–4 месяца) подключения к испытаниям серийных самолетов, участвующих в испытаниях;

• комплексирования, насыщенности и целенаправленности программ летных испытаний, обеспечивающих их эффективность и качество;

• четкой методологической направленности программ и подчиненности задачам сертификации по нормам FAA (30 %) (из примерно 1500 полетов – 300 зачетных для подтверждения требований по нормам FAA);

• установки мощного автоматизированного экспериментального оборудования на борту самолетов для получения информационного массива данных и его отработки на борту в реальном масштабе времени;

• сопровождающего моделирования полета на земле в реальном масштабе времени;

• широкой автоматизации регистрации и обработки данных, как на земле, так и в полете, позволяющей иметь через 3 часа после полета полную информацию о результатах использования быстродействующих ЭВМ и дисплейных станций в режиме диалога «борт—земля», радио– и телекоммуникаций;

• умелого использования сопутствующих факторов (раннее подключение к наземным испытаниям летчиков-испытателей, благоприятные климатические условия, высокоавтоматизированная система управления воздушным движением и др.).

6.3. Организация работ по лицензированию деятельности предприятий