Сети города. Люди. Технологии. Власти — страница 20 из 98

Подобным же образом в последние годы увеличилось количество кибератак на системы управления городским транспортом, и не только собственно атак, но и полномасштабных «демонстраций» атак и тех последствий, к которым они могут привести. Сама идея парализовать город, разорвав транспортные потоки, воздействуя на компьютеризированную инфраструктуру, не нова: еще в фильме 1969 года «Ограбление по-итальянски» использовался подобный сюжет. Но сегодня такой «взлом» может быть осуществлен на расстоянии, и от него гораздо сложнее защититься. Например, кибератака на платную дорогу в Хайфе (Израиль) в 2013 году привела к закрытию магистрали на восемь часов, в результате чего произошел крупнейший транспортный коллапс. Кибератака на городскую железнодорожную сеть Сан-Франциско привела к тому, что автоматы по продаже билетов вышли из строя на два дня. Исследовательской группе из Университета Мичигана удалось взломать и захватить управление более чем тысячью светофоров, работающих на Wi-Fi. Для этого им понадобился только ноутбук, индивидуальное ПО и направленный радиопередатчик. Подросток из Лодзи (Польша) взломал систему управления трамвайными путями своего города, что привело к трагическим последствиям: четыре трамвая сошли с рельсов, и несколько пассажиров получили травмы. И конечно, современные автомобили также открыты кибератакам, так как новая машина содержит до двухсот сенсоров, связанных примерно с сорока беспроводными сетями.

Каждый тип технологических решений в системе умного города и специфические компоненты системы, включая диспетчерские системы SCADA (supervisory control and data acquisition) – промышленные системы, управляющие автоматизированными производственными процессами), сенсоры и микроконтроллеры интернета вещей, сетевые маршрутизаторы (роутеры) и телекоммуникационные переключатели открыты различным формам кибератак. Все важнейшие городские сервисы, включая электросети, водопровод и регулирование дорожного движения полагаются на системы SCADA, которые используются, чтобы управлять как функционированием предприятия, так и маршрутами перемещения материалов. Эти системы контролируют функционирование инфраструктуры в режиме реального времени и сигнализируют о необходимости вмешательства – как автоматизированного, так и с помощью операторов, – с целью изменить установки системы. Внедрение SCADA-систем началось еще в 1920‐е годы, однако широкое их использование развернулось в 1980‐е. Как следствие, многие системы устарели и содержат «вечные баги» (известные всем ошибки в программном коде, которые производитель не может или не собирается устранять). Функционирование многих SCADA-систем было нарушено хакерами, которые изменяли работу инфраструктуры, отключали обслуживание или воровали данные. Одна из последних наиболее печально известных хакерских атак была произведена сетевым червем Stuxnet в 2009 году, тогда система иранского завода по обогащению урана была заражена вредоносной программой, в результате чего несколько центрифуг были запущены с нарушением технических требований и сломались. К 2010 году о заражении своих систем Stuxnet сообщили 115 стран[240].

Понятие «интернет вещей» относится к процессам связи машинно-читаемых объектов с уникальной идентификацией через интернет таким образом, чтобы они могли «коммуницировать» в большой степени автономно и автоматически. Некоторые объекты пассивны: их можно только отсканировать или обнаружить с помощью сенсоров (как, например, «умные» карты с чипами для прохода в здания или транспортные системы). Другие представляют собой более активно действующие устройства, включающие микроконтроллеры или активаторы.

Все виды объектов, которые раньше были «неодушевленными» – термостаты, бытовая техника, камеры наблюдения, системы освещения, – сейчас становятся сетевыми и «умными», они производят информацию о том, как их используют, и ими можно управлять на расстоянии.

Безопасность интернета вещей может быть на очень разном уровне. В некоторых системах нет шифрования, логинов и паролей, другие открыты для вредоносных программ, а их встроенные программы можно легко модифицировать.

Сложная система взаимозависимостей в сетях интернета вещей приводит к тому, что IoT имеет большую поверхность, открытую кибератакам, и многочисленные уязвимые места (примеры см. в таблице 1). Чтобы продемонстрировать степень уязвимости интернета вещей, провокативный проект Insecam.org предоставляет доступ к видео тысяч небезопасных «камер безопасности» городов по всему миру, доступных в публичном интернете[241]. Эти камеры можно отключить без возможности дистанционного включения[242]. Другие исследователи показали, как взломать и взять под свой контроль системы «умного» освещения, создав этим потенциальную угрозу для личной безопасности горожан[243]. Наконец, инфраструктура интернета вещей может быть использована для совершения кибератак другого рода, как, например, случилось с Dyn (американская компания, предоставляющая сетевые сервисы. – Е. Л.-К.). Атака на нее осенью 2016 года привела к тому, что работа многих важных интернет-сайтов была нарушена из‐за Mirai (червь и ботнет), который захватил небезопасные устройства интернета вещей и использовал их, чтобы бомбардировать серверы Dyn[244].


Таблица 1. Потенциальные риски, связанные с технологиями интернета вещей


Технологии умных городов связаны друг с другом рядом коммуникационных технологий и протоколов, таких как 4G LTE (Long Term Evolution), GSM (Global System for Mobile communication), CDMA (Code Division Multiple Access), Wi-Fi, bluetooth, NFC (Near-Field Communication), ZigBee (открытый беспроводный стандарт) и Z-Wave (беспроводные коммуникации). Каждый их этих способов сетевого соединения и передачи данных имеет проблемы, связанные с безопасностью, из‐за которых данные могут быть перехвачены третьими лицами или открыт неавторизированный доступ к устройствам. Некоторые из этих протоколов настолько комплексны и замысловаты, что их использование сложно сделать безопасным. Подобным же образом телекоммуникационные переключатели, которые соединяют местную и дистанционную инфраструктуру интернета, печально известны слабыми местами и уязвимостями, среди которых возможность попасть в систему «с черного входа» (заложенная для производителей и операторов), а также коды доступа, которые редко обновляются[245]. Кроме того, из‐за превышения запланированной подписки, когда операторы беспроводной связи хотят максимально использовать возможности системы, не нарушая лицензию, сети способны обеспечить потребности лишь части подписчиков. Это значит, что в случае кризиса, когда волна спроса возрастает до размеров, которые система не в силах поддерживать, она не справляется с задачей связывать людей и вещи[246].

Делая умные города безопасными: превентивные меры и минимизация последствий

Очевидно, что технологии умных городов, применяемые сейчас, имеют многочисленные слабые места, которые будут использоваться с различными преступными целями. Поэтому ключевой вопрос касается того, как мы можем работать с этими уязвимостями, чтобы минимизировать угрозы и риски. На сегодняшний день общепризнанная стратегия предполагает широкомасштабные технические меры минимизации рисков, такие как контроль доступа, шифрование, стандарты IT-индустрии и протоколы безопасности, режимы внесения корректировок в ПО, а также курсы повышения квалификации для персонала. Хотя все эти меры имеют определенный положительный эффект, мы утверждаем, что безопасность умных городов становится делом первостепенной важности. Она требует широкого набора систематических мер, который включает как минимизацию последствий (уменьшение силы или интенсивности того, что уже случилось), так и предупреждение (недопущение, чтобы что-то случилось в будущем). Эти меры должны стать обязательными как для рыночных инициатив, так и для государственных исполнительных органов.

Как уже говорилось выше, технологии умных городов обычно создают обширные поверхности, открытые для кибератак, особенно в системах управления, которые содержат унаследованные от систем прошлых поколений компоненты и используют не обновляемое и не отлаживаемое старое ПО. Типичный подход к повышению безопасности систем умных городов всегда состоял в использовании комплекса хорошо известных технических решений. Это такие решения, например, как контроль доступа (логин/пароль, двухфазовая идентификация, биометрические показатели), поддерживаемые в хорошем состоянии качественно разработанные средства сетевой защиты (фаерволы), антивирусы и программы для обнаружения вредоносного ПО, качественное сквозное шифрование, регулярная отладка ПО, способность быстро реагировать с помощью «срочных» обновлений на случаи использования уязвимостей, аудиторские сквозные проверки, эффективные несетевые резервы и планы восстановления систем в случае ЧП[247].

Стандартные технические аспекты безопасности системы ПО
Доступ:

• Эффективное «от и до» шифрование всех коммуникаций.

• Использование сильных паролей и серьезный контроль над входом в систему.

• Средства сетевой защиты (фаерволы).

• Аудиторские сквозные проверки.

Обновление:

• Новейшее оборудование, обеспечивающее проверку на вирусы и вредоносное ПО.

• Автоматически устанавливаемое обновление системы безопасности на все компоненты, включая встроенное программное обеспечение, другие программы, каналы коммуникации и интерфейсы.