Завершением этой приключенческой эпохи в истории атомной теории стали Сольвеевские конгрессы в Брюсселе осенью 1927 и 1930 годов. Тут собрались Планк, Эйнштейн, Лоренц, Бор, Луи де Бройль, Борн, Шрёдингер а из молодого поколения — Крамере, Паули, Дирак, и дискуссия вылилась вскоре в дуэль между Эйнштейном и Бором по вопросу о том, можно ли рассматривать квантовую теорию в ее сложившейся к тому времени форме как окончательное решение проблем, обсуждавшихся в течение нескольких десятилетий. Мы встречались большей частью уже за завтраком в отеле, и Эйнштейн начинал описывать мысленный эксперимент, призванный, как ему казалось, выявить внутренние противоречия копенгагенской интерпретации. Эйнштейн, Бор и я шли затем вместе из отеля в здание, где проходил конгресс, и я прислушивался к оживленным дискуссиям между этими двумя столь непохожими по своим философским установкам людьми, вставляя при случае то или иное замечание о структуре математического формализма. Во время заседания, а еще больше в перерывах мы, молодые, особенно Паули и я, тоже принимались за анализ эйнштейновского эксперимента; и происходили новые дискуссии между Бором и другими копенгагенцами. Как правило, к вечеру у Бора был готов исчерпывающий анализ мысленного эксперимента, преподносившийся Эйнштейну за ужином.
Эйнштейн не имел ничего возразить по существу против этого анализа, но убежденности в душе не чувствовал. Голландский друг Бора Эренфест сказал ему: «Эйнштейн, мне стыдно за тебя; ведь ты сейчас ведешь себя по отношению к квантовой теории точно так же, как противники теории относительности, когда они тщетно пытались опровергнуть твою теорию». В последний день Эйнштейн явился на завтрак со своим известным (разобранным в статье Бора к семидесятилетию Эйнштейна) мысленным экспериментом, предполагавшим определение цвета светового кванта посредством взвешивания источника света до и после излучения этого кванта. Поскольку дело здесь касалось силы тяготения, анализ должен был включать теорию гравитации, а тем самым и общую теорию относительности. Особенным триумфом было то, что к вечеру Бор сумел, используя как раз эйнштейновские формулы общей теории относительности, показать, что и при данном эксперименте соотношения неопределенности остаются в силе и, значит, возражение Эйнштейна необоснованно. Отныне копенгагенскую интерпретацию квантовой теории можно было считать утвердившейся.
Поздней осенью 1927 года мне пришлось покинуть Копенгаген, потому что я принял должность профессора в Лейпцигском университете. Правда, я еще приезжал почти каждый год снова на несколько недель в Копенгаген и говорил с Бором об интересовавших нас обоих вопросах, но эпоха тесного сотрудничества, до предела наполненная волнующими научными событиями, когда я научился бесконечно многому от Бора, к сожалению, подошла к концу.
Первые шаги квантовой механики в Геттингене[13]
Полвека назад в Геттингене возникла квантовая механика, и этот ее юбилей служит хорошим поводом рассказать о начале ее истории здесь, в Геттингене, в традициях старого коллоквиума. Я не могу и не хочу брать на себя роль историка, пытающегося после основательного изучения источников очертить по возможности корректный, объективный образ отдельных событий; существуют очень хорошие исторические очерки, и я не мог бы создать лучший. Мне хотелось бы вместо этого набросать субъективную картину, воссоздать частности, не вошедшие в исторические исследования, и сказать, какие шаги мне лично казались наиболее важными, хотя с объективной точки зрения об их значении следовало бы судить, возможно, иначе. Однако, прежде чем приступить к делу, я должен, пожалуй, сказать еще пару слов о географическом положении Геттингена в ландшафте тогдашней физики, и особенно — тогдашней атомной физики. Квантовая теория Планка была в ту эпоху, собственно, вовсе не теорией, а занозой в ученых умах. В плотно сбитое строение классической физики она внесла идеи, во многих отношениях чреватые трудностями и противоречиями, а потому не много было университетов, где желали всерьез заниматься этой проблематикой. Теория Бора изучалась и развивалась, помимо Копенгагена, преимущественно Зоммерфельдом в Мюнхене, и геттингенцы окончательно решились разрабатывать это научное направление только в 1920 году, когда пригласили к себе Франка и Борна. Сравнивая три центра, в которых впоследствии преимущественно развивалась теоретическая физика, — Копенгаген, Мюнхен и Геттинген, — мы можем связать их с тремя направлениями в ее работе, которые еще и сегодня могут быть отчетливо разграничены между собой: феноменологическое направление стремится привести в осмысленную связь новые данные наблюдений, представить их взаимосвязь в математических формулах, которые казались бы более или менее приемлемыми в свете общепринятой физики; математическое направление трудится над описанием природных процессов посредством тщательно проработанного математического формализма, по возможности отвечающего требованиям чистой математики с ее строгостью; третье направление, которое можно назвать концептуальным, или философским, заботится прежде всего о прояснении понятий, позволяющих в конечном счете описывать природные процессы. Можно задним числом отнести зоммерфельдовскую школу в Мюнхене к феноменологическому методу, геттингенский центр — к математическому, а копенгагенский — к философскому направлениям, хотя границы между ними, естественно, расплывчаты. Мое сообщение по необходимости делится на три временных отрезка — подготовительные 1922–1924 годы, решающий 1925 год и годы разработки — 1926-й и 1927-й.
Если говорить о первых шагах квантовой механики в Геттингене, то начинать надо, несомненно, с «фестиваля Бора» летом 1922 года. По инициативе Гильберта и физиков Франка, Борна и Поля университет пригласил датчанина Нильса Бора прочесть серию обобщающих лекций о своей теории. Были приглашены гости из других городов, в том числе Зоммерфельд из Мюнхена, и все мероприятие, одно из первых подобного рода после суровой разрухи послевоенных лет, носило на себе печать бодрящего нового начинания, служившего как налаживанию международных научных связей, так и решению задач только что возникавшей атомной физики. Вдобавок Геттинген при великолепнейшей погоде того лета сиял садами и цветами, а настроение и волнение академической молодежи, заполнявшей большую часть аудитории, несмотря на трудную тематику, придавало докладам такую праздничность, что выражение «фестиваль Бора» сразу вошло в обиход — по образцу «фестиваля Генделя», как раз тогда начавшегося в Геттингенском городском театре. Зоммерфельд захватил меня с собою из Мюнхена; он дружески финансировал мою поездку, которая далеко выходила за мои тогдашние возможности, и я в полной мере наслаждался праздничными днями, хотя нередко и на пустой желудок, что для студента четвертого семестра было в те годы нормой.
Бор со всей подробностью развернул в серии лекций свою теорию, и мой интерес, как и многих других слушателей, привлекли с самого начала главным образом два круга проблем: во-первых, вопрос, можно ли в самом деле более или менее правильно определить энергии дискретных стационарных состояний, прилагая к механическим движениям электронов в атоме квантовые условия Бора — Зоммерфельда; во-вторых, вопрос о степени соответствия между боровской моделью атома со многими электронами, с одной стороны, и химическими и спектральными характеристиками элементов периодической системы — с другой.
Что касается первого круга проблем, то, как мне показалось, из формулировок Бора очень скоро стало ясно, что он не так твердо верил в применимость классической механики к движениям электронов внутри атома, как, скажем, Зоммерфельд. Тот факт, что при допущении это-то движения частоты предполагаемого обращения электронов вокруг ядра никак не соответствовали частотам испускаемого атомом излучения, сам Бор воспринимал как почти невыносимое противоречие, которое он кое-как пытался преодолеть с помощью своего принципа соответствия. Спорный вопрос, с которым я в этой связи обратился к Бору, повлек за собой долгую беседу во время прогулки к вершине Хайнберга; тогда я впервые понял, сколь трудными, даже почти безнадежными представлялись ему в то время эти проблемы атомной динамики. Бор подчеркивал снова и снова, что человеческий язык явно недостаточен для описания внутриатомных процессов, коль скоро речь идет об области опыта, совершенно лишенной непосредственной наглядности; поскольку же всякое понимание и всякое общение между физиками опирается на язык, никакое решение здесь пока вообще немыслимо. Правда, Бор тогда еще думал, что затруднения коренятся прежде всего в теории излучения, т. е. в электродинамике, тогда как я, наоборот, выводил из нашей дискуссии все больше доводов в пользу того, что на роль козла отпущения как будто бы претендует механика или даже, пожалуй, прямо кинематика. О втором круге проблем — квантовании многоэлектронной системы и периодической системе элементов — мы в те дни говорили очень мало. Бор подтвердил мне, что, как мы с Паули уже давно догадывались в Мюнхене, он вывел свои сложные атомные модели не по законам классической механики, и что они, скорее интуитивно, на основании его опыта возникли у него в качестве наглядных образов, насколько вообще механические образы пригодны для представления атомных процессов.
Лекции Бора послужили решающим стимулом для дальнейшего развития атомной физики в Геттингене. Поскольку в зимний семестр 1922/23 учебного года я учился в Геттингене — Зоммерфельд уехал на это время в Америку, — события развертывались с самого начала у меня на глазах. Борн организовал семинар по проблемам теории Бора. Поскольку, как мне помнится, в нем приняло участие едва ли больше восьми физиков и математиков, семинар часто собирался вечерами в доме Борна. Госпожа Борн пирожками или фруктами подкрепляла силы участников. Их точный список я сейчас уже не смог бы привести, в него определенно входили Йордан, Хунд, Ферми, Паули, Нортхайм и математик Карекьярто, может быть не все одновременно; впрочем, и тут я лучше предоставил бы восстановление частных подробностей историку. Задания, которые давал нам в рамках этого семинара Борн, относились исключительно к области механики, и уже отсюда становилось ясно, что Борн тоже видел подлинный камень преткновения в механике и лишь во вторую очередь — в электродинамике или в теории излучения. Мне досталась в этой связи задача разобраться в теории возмущений из классической астрономии; ибо всем, кто работал в нашей области, уже тогда было ясно, что заниматься расчетом простого случая атома водорода с его единственным электроном недостаточно. Правила Бора — Зоммерфельда были с успехом приложимы к водороду даже при наличии возмущения в виде внешнего электромагнитного поля; но при разборе систем со многими электронами возникали непреодолимые трудности. От геттингенских математиков мы знали о головоломной трудности задачи трех тел в астрономии. Периодические и непериодические решения располагаются там в сколь угодно тесном соседстве. А квантовые условия опирались исключительно на допущение периодических решений. Мы углубились поэтому прежде всего в общую теорию возмущений механики Гамильтона — Якоби, как она применяется астрономами. Потом перешли к изучению резонансных эффектов между различными планетными орбитами од