Шаги за горизонт — страница 14 из 73

ной и той же системы; мне однажды пришлось выступить с рефератом о так называемом методе Болина[14]. Главная польза этих усилий заключалась в осознании того, что, хотя классическая механика заведомо неверна, она содержит многие черты, обнаруживающиеся в эмпирических закономерностях квантовой теории, и что боровский принцип соответствия образует в некотором смысле мост между этими двумя столь различными представлениями. Так что если в Мюнхене точный расчет отдельных атомных состояний считали важнейшим достижением квантовой теории, а в принципе соответствия видели малоудовлетворительную «затычку» на худой конец, то в геттингенских дискуссиях принцип соответствия все определеннее выдвигался на центральное место. К тому же в феноменологических работах мюнхенской школы по аномальному эффекту Зеемана и по определению расстояния между спектральными линиями и интенсивностей в мультиплетах снова и снова всплывали формулы, очень похожие на те, которые можно было вывести из классической механики. Например, в таких формулах часто встречался квадрат орбитального момента. Однако если квантовое число орбитального момента системы принять за то его квадрат эмпирически оказывался равным не I2, а I (I+1); в одной работе об эффекте Зеемана я охарактеризовал корень из этого последнего выражения как орбитальный импульс. Это дало повод Зоммерфельду, придававшему принципиальную важность целочисленным решениям, назвать введенную мною величину «размытым I». Мало-помалу в ходе геттингенских дискуссий укоренялось ощущение, что классические формулы всегда лишь наполовину верны — однако все-таки наполовину они верны — и что при известной сноровке по ним можно угадать верные квантово-теоретические формулы.

Естественно, пут же, в Геттингене, продолжалась работа и над другими темами, выдвинутыми «фестивалем Бора» и касавшимися многоэлектронной системы и периодической системы элементов. Вспоминаю, что этому были посвящены главным образом дискуссии между Бором и Хундом, в то время как я, хотя и занимался еще с мюнхенских времен аномальным эффектом Зеемана и мультиплетами, уделял больше внимания сущностным вопросам принципа соответствия. Другой важный стимул в том же направлении исходил из работ Ладенбурга и Крамерса по дисперсионной теории. Здесь Фурье-компоненты, описывающие движение в классической механике, были поставлены в связь с эйнштейновскими вероятностями перехода при рассеянии света. Принцип соответствия был тем самым конкретно проинтерпретирован через соотношения, взятые из классической теории дисперсии, так что опять можно было признать классическую механику наполовину верной.

Тогдашнее состояние дискуссий очень точно изображено в летней (1924 года) работе Борна под заглавием «О квантовой механике». Здесь, таким образом, впервые был употреблен термин «квантовая механика», и я должен, пожалуй, воспроизвести резюме, стоявшее в начале работы Борна. Оно гласило: «В работе содержится попытка сделать первый шаг к квантовой механике внутриатомной связи; для важнейших свойств атома — стабильности, резонанса на дискретных частотах, принципа соответствия — предлагаются объяснения, естественным образом вытекающие из законов классической физики. Теория включает дисперсионную формулу Крамерса и обнаруживает тем самым близкое родство с полученной в Мюнхене [Гейзенбергом] формулировкой правил аномального эффекта Зеемана»[15]. Как явствует из деталей работы, Борн имел совершенно отчетливое ощущение, что квантовая механика отличается от классической механики тем, что на место дифференциальных уравнений классической теории в квантовой теории должны выступить разностные уравнения. Он дал мне поэтому задание изучить теорию разностных уравнений, уже подробно разработанную математиками. Я выполнил задание с немалым эстетическим наслаждением, но также и с чувством, что физические проблемы никогда нельзя разрешить, исходя из чистой математики. Реальная преграда, о которой мы тогда догадывались, но которую еще не понимали, заключалась в том, что мы все еще продолжали говорить об орбитах электронов и не имели тут, собственно, никакой альтернативы; ведь была же видна траектория электрона в камере Вильсона, так, стало быть, и внутри атома должны были существовать орбиты электронов.

Прежде чем перейти теперь к событиям 1925 года, я хотел бы рассказать две небольшие истории, показывающие, как напряженно мы занимались тогда проблематикой квантовой теории. Группа молодых людей, учившихся у Борна и Франка, вообще не могла говорить ни о чем другом, кроме теории квантов, — до того мы были захвачены ее успехами и внутренними противоречиями. Мы брали тогда скромные обеды в одном частном заведении напротив аудиторного корпуса. Однажды, к моему изумлению, хозяйка попросила меня после обеда для частного разговора в свою комнату. Она объявила мне, что мы, физики, к сожалению, не сможем впредь обедать у нее, потому что вечные профессиональные глупости за нашим столом до того надоели другим людям за другими столами, что она потеряет остальных клиентов, если не расстанется с нами. В другой раз мы вместе отправились на лыжную прогулку в Гарц, кажется, мы хотели подняться на Брокен, и на обратном пути в Андреасберг один из группы, по-моему Ханле, пропал. Мы искали и не могли найти его и уже боялись, как бы он не повредил себе ногу или не заблудился в лесу. Вдруг из порядком отдаленного лесочка мы услышали довольно-таки жалобный крик «hν!» (аш ню), и поняли, куда перенести свои поиски.

Но теперь вернемся к событиям 1925 года. В зимний семестр 1924/25 учебного года я снова работал в Копенгагене, пытаясь построить вместе с Крамерсом теорию дисперсии. По ходу работы в формулах, описывающих эффект Рамана, появились определенные математические выражения, которые в классической теории были произведениями рядов Фурье, тогда как в квантовой теории они явно подлежали замене аналогично построенными произведениями рядов, относящихся к квантово-теоретическим амплитудам линий спектра испускания или поглощения. Закон умножения для этих рядов имел простой и убедительный вид. Когда в летний семестр 1925 учебного года я возобновил эту работу в Геттингене, одно из первых же обсуждений с Борном привело нас к выводу, что я должен попытаться угадать амплитуды и интенсивности для водорода, исходя из формул классической теории с учетом боровского принципа соответствия. Этот метод угадывания уже успел хорошо зарекомендовать себя. Нам казалось, что мы достаточно усвоили его в прошлых работах. Однако при более углубленном подходе задача оказалась чересчур сложной, по крайней мере для моих математических способностей, и я искал более простые механические системы, где метод угадывания обещал больший успех. При этом у меня возникло ощущение, что я должен отказаться от какого бы то ни было описания орбит электронов, должен даже сознательно изгонять подобные представления. Вместо этого мне хотелось целиком положиться на полуэмпирические правила умножения амплитудных рядов, которые оправдали себя в теории дисперсии. Искомой механической системой я избрал одномерный ангармонический осциллятор, который казался мне достаточно простой и вместе с тем не слишком тривиальной моделью.

Примерно в то же время, в конце мая или в начале июня, мне пришлось попросить у Борна двухнедельный отпуск, поскольку я заболел очень неприятной формой сенной лихорадки и хотел дождаться выздоровления на уединенном острове Гельголанд вдали от цветущих лугов. Там я смог без всяких внешних помех уйти с головой в свою проблему. Я заменил пространственные координаты таблицей амплитуд, которая предположительно должна была соответствовать классическому ряду Фурье, и написал для нее классическое уравнение движения, причем в нелинейном члене, выражавшем ангармоничность, применил умножение амплитудных рядов, оправдавшее себя в дисперсионной теории. Лишь гораздо позднее я узнал от Борна, что речь тут шла просто о матричном умножении — разделе математики, остававшемся мне до того времени неизвестным. Меня беспокоило то, что при такого рода умножении рядов a x b не обязательно оказывалось равным b x а. При таком уравнении движения таблицы, выражавшие пространственное местоположение, не достигали еще однозначной определенности. Предстояло еще найти замену для квантового условия Бора — Зоммерфельда, ибо в нем применялось понятие электронных орбит, которое я намеренно сделал для себя запретным. Но отвечающее принципу соответствия преобразование вскоре привело меня к известному мне по Копенгагену правилу сумм, которое Томас и Кун вывели из дисперсионной теории[16]. Тем самым вроде бы вся математическая схема обретала законченный вид, и теперь оставалось исследовать, поддается ли она механической интерпретации. Для этого требовалось показать, что существует выражение для энергии, которое можно представить через таблицы координат и которое по принципу соответствия связано с классической формулой энергии; что это выражение постоянно во времени, то есть что закон сохранения энергии не нарушается; и что соответственно таблицы, выражающие энергию, представляют собою то, что мы сегодня называем диагональной матрицей. Наконец, предстояло доказать, что разности энергетических уровней различных атомных состояний с точностью до множителя h, то есть постоянной Планка, соответствуют частоте излучения, испускаемого при переходах. Таким образом, надо было удовлетворить сразу многим условиям; расчеты были элементарными, но именно поэтому довольно громоздкими. В конце концов оказалось, что все условия удовлетворены, что можно тем самым уверенно говорить о создании основ квантовой механики. По возвращении в Геттинген я показал работу Борну, который нашел ее интересной, но несколько странной; странной потому, что понятие электронных орбит было полностью элиминировано. Он все равно послал ее для публикации в физический журнал. Борн и Йордан углубились в математические выводы из работы, на этот раз без меня, потому что Эренфест и Фаулер пригласили меня прочесть доклады в Голландии и в английском Кембридже. Буквально за несколько дней Борн и Йордан отыскали решающее соотношение pq — qp = 2πi/h, благодаря которому вся математическая схема стала сразу прозрачной; теперь можно было легко и изящно выводить такие важные законы, как закон сохранения энергии